Kurnaz, SeferElzaridi, Khalid Mohammed Abdullah2024-11-082024-11-0820242024Elzaridi, K. M. A. (2024). Integration between network intrusion detection and machine learning techniques to optimizing network security. (Yayınlanmamış yüksek lisans tezi). Altınbaş Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.https://hdl.handle.net/20.500.12939/4985In an increasingly linked world beset with cybersecurity risks, the necessity for powerful intrusion detection systems (IDS) is paramount. This thesis proposes a fresh approach to IDS development. using modern machine learning algorithms and feature selection techniques to boost detection accuracy and resistance. Drawing upon lessons from earlier research, we address fundamental flaws in existing IDS approaches. emphasis on scalability and susceptibility to advanced assaults. Our suggested hybrid model, incorporating Random Forest, Gradient Boosting Machines, and Neural Networks, obtains a remarkable accuracy rate of 96% in identifying network intrusions. Utilizing the Intrusion Detection Evaluation Dataset (CIC-IDS2017), Our trials illustrate the efficacy of the proposed technique in realworld circumstances. This research contributes to the evolution of cybersecurity techniques by delivering practical insights for strengthening the security and resilience of digital infrastructures.Siber güvenlik riskleriyle kuşatılmış, giderek bağlantılı hale gelen bir dünyada, güçlü izinsiz giriş tespit sistemlerine (IDS) duyulan ihtiyaç çok önemlidir. Bu tez IDS gelişimine yeni bir yaklaşım önermektedir. algılama doğruluğunu ve direncini artırmak için modern makine öğrenimi algoritmalarını ve özellik seçme tekniklerini kullanıyor. Daha önceki araştırmalardan ders alarak mevcut IDS yaklaşımlarındaki temel kusurları ele alıyoruz. ölçeklenebilirliğe ve gelişmiş saldırılara karşı duyarlılığa vurgu. Rastgele Orman, Gradyan Arttırma Makineleri ve Sinir Ağlarını içeren önerdiğimiz hibrit modelimiz, ağ izinsiz girişlerini tespit etmede %96 gibi dikkate değer bir doğruluk oranı elde ediyor. İzinsiz Giriş Tespiti Değerlendirme Veri Kümesini (CIC-IDS2017) kullanan denemelerimiz, önerilen tekniğin gerçek dünya koşullarındaki etkinliğini göstermektedir. Bu araştırma, dijital altyapıların güvenliğini ve dayanıklılığını güçlendirmeye yönelik pratik bilgiler sunarak siber güvenlik tekniklerinin gelişimine katkıda bulunuyor.eninfo:eu-repo/semantics/openAccessIntrusion Detection SystemsMachine Learning AlgorithmsFeature SelectionCybersecurityHybrid ModelSaldırı Tespit SistemleriMakine Öğrenme AlgoritmalarıÖzellik SeçimiSiber GüvenlikHibrit ModelIntegration between network intrusion detection and machine learning techniques to optimizing network securityMaster Thesis884021