Yazar "Ab-BelKhair, Adel" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A study of deep neural network controller-based power quality improvement of hybrid PV/Wind systems by using smart inverter(Hindawi Ltd, 2020) Ab-BelKhair, Adel; Rahebi, Javad; Abdulhamed Mohamed Nureddin, AbdulbasetPresently, climate change and global warming are the most uncontrolled global challenges due to the extensive fossil fuel usage for power generation and transportation. Nowadays, most of the developed countries are concentrating on developing alternative resources; consequently, they did huge investments in research and development. In general, alternative energy resources including hydropower, solar power, and wind energy are not harmful to nature. Today, solar power and wind power are very popular alternative energy sources due to their enormous availability in nature. In this paper, the photovoltaic cell and wind energy systems are investigated under various weather conditions. Based on the findings, we developed an advanced intelligent controller system that tracks the maximum power point. The MPPT controller is a must for the renewable energy sources due to unpredictable weather conditions. The main objective of this paper is to propose a new algorithm that is based on deep neural network (DNN) and maximum power point tracking (MPPT), which was simulated in a MATLAB environment for photovoltaic (PV) and wind-based power generation systems. The development of an advanced DNN controller that improves the power quality and reduces THD value for the microgrid integration of hybrid PV/wind energy system was performed. The MATLAB simulation tool has been used to develop the proposed system and tested its performance in different operating situations. Finally, we analyzed the simulation results applying the IEEE 1547 standard.Öğe Power management controller for microgrid integration of hybrid PV/Fuel cell system based on artificial deep neural network(Hindawi Ltd, 2020) Nureddin, Abdulbaset Abdulhamed Mohamed; Rahebi, Javad; Ab-BelKhair, AdelNowadays, the power demand is increasing day by day due to the growth of the population and industries. The conventional power plant alone is incompetent to meet the consumer demand due to environmental concerns. In this present situation, the essential thing is to be find an alternate way to meet the consumer demand. In present days most of the developed countries concentrate to develop alternative resources and invest huge money for its research and development activities. Most renewable energy sources are naturally friendly sources such as wind, solar, fuel cell, and hydro/water sources. The results of power generation using renewable energy sources only depend on the availability of the resources. The availability of renewable energy sources throughout the day is variable due to fluctuations in the natural resources. This research work discusses two major renewable energy power generating sources: photovoltaic (PV) cell and fuel cell. Both of them provide foundations for power generation, so they are very popular because of their impressive performance mechanisms. The mentioned renewable energy-based power generating systems are static devices, so the power losses are generally ignorable as compared to line losses in the main grid. The PV and fuel cell (FC) power systems need a controller for maximum power generation during fluctuations in the input resources. Based on the investigation report, an algorithm is proposed for an advanced maximum power point tracking (MPPT) controller. This paper proposes a deep neural network- (DNN-) based MPPT algorithm, which has been simulated using MATLAB both for PV and for FC. The main purpose behind this paper has been to develop the latest DNN controller for improving the output power quality that is generated using a hybrid PV and fuel cell system. After developing and simulating the proposed system, we performed the analysis in different possible operating conditions. Finally, we evaluated the simulation outcomes based on IEEE 1547 and 519 standards to prove the system's effectiveness.