Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Akan, Taymaz" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Multi-modal Battle Royale optimizer
    (Springer, 2024) Çiçek, K. Dilşad; Akan, Taymaz; Bayat, Oğuz
    Multimodal optimization poses a challenging problem in the field of optimization as it entails the discovery of multiple local and global optima, unlike unimodal optimization, which seeks a single global solution. In recent years, the significance of addressing multimodal optimization challenges has grown due to the real-world complexity of many problems. While numerous optimization methods are available for unimodal problems, multimodal optimization techniques have garnered increased attention. However, these approaches often grapple with a common issue: the determination of the niching parameter, necessitating prior knowledge of the problem space. This paper introduces a novel multimodal optimization approach that circumvents the need for prior problem space knowledge and avoids the challenge of predefining the niching parameter. Building upon the Battle Royal Optimization (BRO) algorithm, this extended version formulates a multimodal solution by utilizing Coulomb's law to identify suitable neighbors. The incorporation of Coulomb's law serves the dual purpose of identifying potential local and global optima based on fitness values and establishing optimal distances from solution candidates. A comparison study was done between the MBRO and seven well-known multimodal optimization algorithms using 14 benchmark problems from the CEC 2013 and CEC 2015 competitions to see how well it worked. The experimental results underscore MBRO's proficiency in successfully identifying most, if not all, local and global optima, positioning it as a superior solution when compared to its competitors.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim