Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Al Hassani, Raghad Tariq" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Human activity detection using smart wearable sensing devices with feed forward neural networks and PSO
    (2023) Al Hassani, Raghad Tariq; Atilla, Doğu Çağdaş
    Hospitals must continually monitor their patients’ actions to lower the chance of accidents, such as patient falls and slides. Human behavior is difficult to track due to the complexity of human activities and the unpredictable nature of their conduct. As a result, creating a static link that is used to influence human behavior is challenging, since it is hard to forecast how individuals will think or act in response to a certain event. Mobility tracking depends on intelligent monitoring systems that apply artificial intelligence (AI) applications referred to as “categories”. Because motion sensors, such as gyroscopes and accelerometers, output unconnected data that lack labels, event detection is a vital task. The fall feature parameters of tridimensional accelerometers and gyroscope sensors are presented and used, and the classification technique is based on distinguishing characteristics. This study focuses on the age-old problem of tracking turbulence in motion to improve detection precision. We trained the model, considering that detection accuracy is limited by factors such as the subject’s mass, velocity, and gait style. This is performed by employing an experimental dataset. When we used the sophisticated technique of particle swarm optimization (PSO) in combination with a four-stage forward neural network (4SFNN) to forecast four different types of turbulent motion, we observed that the total prediction accuracy was 98.615% accurate.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim