Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Al-Zawi, Saad" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Understanding of a convolutional neural network
    (Ieee, 2017) Albawi, Saad; Mohammed, Tareq Abed; Al-Zawi, Saad
    The term Deep Learning or Deep Neural Network refers to Artificial Neural Networks (ANN) with multi layers. Over the last few decades, it has been considered to be one of the most powerful tools, and has become very popular in the literature as it is able to handle a huge amount of data. The interest in having deeper hidden layers has recently begun to surpass classical methods performance in different fields; especially in pattern recognition. One of the most popular deep neural networks is the Convolutional Neural Network (CNN). It take this name from mathematical linear operation between matrixes called convolution. CNN have multiple layers; including convolutional layer, non-linearity layer, pooling layer and fully-connected layer. The convolutional and fully-connected layers have parameters but pooling and non-linearity layers don't have parameters. The CNN has an excellent performance in machine learning problems. Specially the applications that deal with image data, such as largest image classification data set (Image Net), computer vision, and in natural language processing (NLP) and the results achieved were very amazing. In this paper we will explain and define all the elements and important issues related to CNN, and how these elements work. In addition, we will also state the parameters that effect CNN efficiency. This paper assumes that the readers have adequate knowledge about both machine learning and artificial neural network.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim