Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Al-azzawi, Athar" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Covid-19 X-ray image classification using SVM based on Local Binary Pattern
    (IEEE, 2021) Al-jumaili, Saif; Al-azzawi, Athar; Duru, Adil Deniz
    Coronavirus usually transmits from the animal to the human, but now, the virus transmission is between persons. Therefore, scientists and researchers are trying to develop several types of machine learning methods to defend against COVID-19. Medical images play a significant role in this time due to they can be used to recognize COVID-19 accurately. However, in this paper, we used X-Ray images, the images undergone to sharpening techniques to increase the results further. The texture techniques named local binary pattern (LBP) have been used in order to extract features. The features obtained were applied to the support vector machine (SVM). The results we achieved were 100% for all performance measurements. Our results were conspicuously superior compared to the state-of-the-art papers published.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim