Yazar "Almehmadi, Mazen" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Hybrid feature selection framework for the parkinson imbalanced dataset prediction problem(MDPI, 2021) Qasim, Hayder Mohammed; Ata, Oğuz; Ansari, Mohammad Azam; Alomary, Mohammad N.; Alghamdi, Saad; Almehmadi, MazenBackground and Objectives: Recently, many studies have focused on the early detection of Parkinson’s disease (PD). This disease belongs to a group of neurological problems that immediately affect brain cells and influence the movement, hearing, and various cognitive functions. Medical data sets are often not equally distributed in their classes and this gives a bias in the classification of patients. We performed a Hybrid feature selection framework that can deal with imbalanced datasets like PD. Use the SOMTE algorithm to deal with unbalanced datasets. Removing the contradiction from the features in the dataset and decrease the processing time by using Recursive Feature Elimination (RFE), and Principle Component Analysis (PCA). Materials and Methods: PD acoustic datasets and the characteristics of control subjects were used to construct classification models such as Bagging, K-nearest neighbour (KNN), multilayer perceptron, and the support vector machine (SVM). In the prepressing stage, the synthetic minority over-sampling technique (SMOTE) with two-feature selection RFE and PCA were used. The PD dataset comprises a large difference between the numbers of the infected and uninfected patients, which causes the classification bias problem. Therefore, SMOTE was used to resolve this problem. Results: For model evaluation, the train–test split technique was used for the experiment. All the models were Grid-search tuned, the evaluation results of the SVM model showed the highest accuracy of 98.2%, and the KNN model exhibited the highest specificity of 99%. Conclusions: the proposed method is compared with the current modern methods of detecting Parkinson’s disease and other methods for medical diseases, it was noted that our developed system could treat data bias and reach a high prediction of PD and this can be beneficial for health organizations to properly prioritize assets.Öğe Multi-objective deep learning framework for COVID-19 dataset problems(2023) Mohammedqasem, Roa'a; Mohammedqasim, Hayder; Asad Ali Biabani, Sardar; Ata, Oğuz; Alomary, Mohammad N.; Almehmadi, Mazen; Amer Alsairi, Ahad; Azam Ansari, MohammadBackground: It has been reported that a deadly virus known as COVID-19 has arisen in China and has spread rapidly throughout the country. The globe was shattered, and a large number of people on the planet died. It quickly became an epidemic due to the absence of apparent symptoms and causes for patients, confusion appears due to the lack of sufficient laboratory results, and its intelligent algorithms were used to make decisions on clinical outcomes. Methods: This study developed a new framework for medical datasets with high missing values based on deep-learning optimization models. The robustness of our model is achieved by combining: Data Missing Care (DMC) Framework to overcome the problem of high missing data in medical datasets, and Grid-Search optimization used to develop an improved deep predictive training model for patients with COVID-19 by setting multiple hyperparameters and tuning assessments on three deep learning algorithms: ANN (Artificial Neural Network), CNN (Convolutional Neural Network), and Recurrent Neural Networks (RNN). Results: The experiment results conducted on three medical datasets showed the effectiveness of our hybrid approach and an improvement in accuracy and efficiency since all the evaluation metrics were close to ideal for all deep learning classifiers. We got the best evaluation in terms of accuracy 98%, precession 98.5%, F1-score 98.6%, and ROC Curve (95% to 99%) for the COVID-19 dataset provided by GitHub. The second dataset is also Covid-19 provided by Albert Einstein Hospital with high missing data after applying our approach the accuracy reached more than 91%. Third dataset for Cervical Cancer provided by Kaggle all the evaluation metrics reached more than 95%. Conclusions: The proposed formula for processing this type of data can replace the traditional formats in optimization while providing high accuracy and less time to classify patients. Whereas, the experimental results of our approach, supported by comprehensive statistical analysis, can improve the overall evaluation performance of the problem of classifying medical data sets with high missing values. Therefore, this approach can be used in many areas such as energy management, environment, and medicine.