Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Awad, Omer Fawzi" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    An enhanced attention and dilated convolution-based ensemble model for network intrusion detection system against adversarial evasion attacks
    (Springer, 2025) Awad, Omer Fawzi; Çevik, Mesut; Farhan, Hameed Mutlag
    Network Intrusion Detection System (NIDS) is a system for recognizing suspicious activities in the network traffic. Numerous machines learning and deep learning-aided IDSs have been implemented in the past, however, most of these techniques face challenges based on class imbalance issues and high false positive rates. Other primary problems of the conventional techniques are their vulnerability to adversarial attacks and also there is no analysis done on how NIDS sustain their performance over various attacks. Moreover, recent studies have demonstrated that while handling the attackers in real-time, the deep learning-based IDS shows slight variations in accuracy. To defend against adversarial evasion attacks, an enhanced deep learning-based NIDS model is designed in this work. For this purpose, at first, the required data is collected from available websites. From the collected data, effective features are extracted to improve the accuracy of the process. To select the optimal features, this work employed the Improved Cheetah Optimizer (ICO) that eliminates the unwanted features efficiently. Further, an Attention and Dilated Convolution based Ensemble Network (ADCEN) is implemented to detect the intrusions from the optimal features. The Deep Temporal Convolutional Neural Network (DTCN), Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) models are integrated to develop the ADCEN. The outcomes from each technique are considered for the fuzzy ranking mechanism to generate the final detected outcome. Thus, recognized intrusion is attained as the outcome and to demonstrate how well the recommended deep learning-based NIDS defends against adversarial evasion assaults, experiments are conducted against conventional models. The accuracy and the FPR values of the recommended model are 95 and 4.9 when considering the first dataset which is superior to the conventional techniques. Thus, the findings indicated that the implemented NIDS against adversarial evasion attacks attained more effective solutions than the baseline approaches.
  • [ X ]
    Öğe
    Enhancing IIOT security with machine learning and deep learning for intrusion detection
    (University Of Malaya, 2024) Awad, Omer Fawzi; Hazim, Laytha Rafea; Jasim, Abdulrahman Ahmed; Ata, Oğuz
    The rapid growth of the Internet of Things (IoT) and digital industrial devices has significantly impacted various aspects of life, underscoring the importance of the Industrial Internet of Things (IIoT). Given its importance in industrial contexts that affect human life, the IIoT represents a key subset of the broader IoT landscape. Due to the proliferation of sensors in smart devices, which are viewed as points of contact, as the gathering of data and information regarding the IIoT systems and devices operating on the IoT, there is an urgent requirement for developing effective security methods to counter such threats as well as protecting IIoT systems. In this study, we develop and evaluate a well -optimized intrusion detection system (IDS) based on deep learning (DL) and machine learning (ML) techniques to enhance IIoT security. Leveraging the Edge-IIoTset dataset, specifically designed for IIoT cybersecurity evaluations, we focus on detecting and mitigating 14 distinct attack types targeting IIoT and IoT protocols. These attacks are categorized into five threat groups: information collection, malware, DDoS, manin -the -middle attacks, and injection attacks. We conducted experiments using machine learning algorithms (knearest neighbors, decision tree) and a neural network on the KNIME platform, achieving a remarkable 100% accuracy with the decision tree model. This high accuracy demonstrates the effectiveness of our approach in protecting industrial IoT networks.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim