Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Fayez, Mustafa Adil Fayez" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Diagnosis of cardiovascular (CVD) disease using high performance machine learning system
    (Altınbaş Üniversitesi / Lisansüstü Eğitim Enstitüsü, 2021) Fayez, Mustafa Adil Fayez; Kurnaz, Sefer
    One of the most prevalent illnesses in middle-aged people is heart failure. Cardiovascular disease (CAD) is a common coronary disease with a high mortality risk of the various forms of heart disease. Medical imaging, such as angiography, is the most effective technique for diagnosing CAD. Angiography, on the other hand, is notorious for being pricey and causing a variety of side effects. In the first part of our work, we will address one of the most sophisticated and effective systems in the medical sector, specifically cardiac diagnostics, in this thesis. This advanced methodology, which is split into two sections, was developed with the aid of the best programming method, Python. To start, feature engineering and preprocessing with a highperformance re-sampling system and a neighborhood cleaning rule is used (NCL). Second, hyper-parameter optimization, API advanced features, and super learner models are examples of advanced and optimization machine learning models. We have used streamlined SVM to construct a high-performing diagnostic model. We built advanced architectures for high-performance machine learning, such as AutoML, advanced XGBoost, and advanced ensemble bagging models, in the second part of our study. We obtained the best performance using AutoML and advanced SMOTE method, which had an accuracy of 87%, advanced deep learning had an accuracy of 80%, and advanced bagging models had an accuracy of 82 percent.in addition, we achieved 86% with XGBoost and 92% used stacking model. Finally, we assume that our advances can change the way doctors view machine learning using advanced and highperformance machine learning tools, as well as promote the wider usage of Artificial Intelligence (AI) techniques in clinical settings.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim