Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mohamed, Saad Abdalla Agaili" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Classified VPN network traffic flow using time related to artificial neural network
    (Tech Science Press, 2024) Mohamed, Saad Abdalla Agaili; Kurnaz, Sefer
    VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world. However, increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks (ANN). This paper aims to provide a reliable system that can identify a virtual private network (VPN) traffic fromintrusion attempts, data exfiltration, and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns. Next, we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions. To effectively process and categorize encrypted packets, the neural network model has input, hidden, and output layers. We use advanced feature extraction approaches to improve theANN's classification accuracy by leveraging network traffic's statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance. The suggested ANN-based categorization method is extensively tested and analyzed. Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision, recall, and F1-score with 98.79% accuracy. This study improves VPN security and protects against new cyberthreats. Classifying VPNtraffic flows effectively helps enterprises protect sensitive data, maintain network integrity, and respond quickly to security problems. This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim