Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mohammed, Ayoob Jasim" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Enhancing smart grid efficiency: a modified ANN-LSTM approach for energy storage and distribution optimization
    (Institute of Electrical and Electronics Engineers Inc., 2023) Mohammed, Ramzi Qasim; Abdulrazzaq, Mohammed Majid; Mohammed, Ayoob Jasim; Mardikyan, Kevork; Çevik, Mesut
    The smart grid represents a paradigm shift in energy management, aiming to optimize energy storage and distribution while accommodating the growing demand for renewable energy sources. In this paper, we investigate the application of a modified Artificial Neural Network with Long Short-Term Memory (ANN-LSTM) in addressing the multifaceted challenges of the smart grid. Through rigorous experimentation and simulation, the ANN-LSTM is evaluated in four diverse scenarios, including normal operation, fluctuating renewable energy, peak demand, and grid instability. The results showcase the model's exceptional predictive accuracy, low Mean Squared Error (MSE), and rapid response times, outperforming other models, such as Support Vector Machine (SVM), Convolutional Neural Network (CNN), Decision Tree (DT), and Fuzzy Logic. Our findings underscore the ANN-LSTM's potential to revolutionize energy storage and distribution in the smart grid, ushering in a new era of efficiency, sustainability, and resilience in energy management.
  • [ X ]
    Öğe
    Three phase fault location and nature determination using smart intelligent technique
    (Institute of Electrical and Electronics Engineers Inc., 2022) Mohammed, Ayoob Jasim; Hamodat, Zaid; Hammoodi, Yazen Fawwaz
    Electrical power is being generated using fuel-based turbines in large amounts for maintaining the huge demand. The cost of maintaining the power system is being added to that of power generation. It is reported that losses due to faults in distribution sub systems are major as compared with generation cost. Protection of power system is vital for cost reduction and economical worthiness. It has also vital impact of quality of service given to the consumers through minimizing the fluctuation time. In this paper, three phase fault detection and isolation is being performed using artificial neural network.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim