Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mohammedqasem, Roa'a" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    ENHANCING PREDICTIVE PERFORMANCE IN COVID-19 HEALTHCARE DATASETS: A CASE STUDY BASED ON HYPER ADASYN OVER-SAMPLING AND GENETIC FEATURE SELECTION
    (Taylors Univ Sdn Bhd, 2024) Mohammedqasim, Hayder; Jasim, Abdulrahman Ahmed; Mohammedqasem, Roa'a; Ata, Oguz
    Predictive analytics is paramount in the health industry, where it finds its wide application, in that it helps increase the forecast's accuracy level based on big data. Most of the time, there is a tendency toward the imbalance of the datasets in healthcare. In this study, two COVID-19 datasets from Kaggle were used as a case study of dataset imbalance. In such scenarios of imbalanced datasets like COVID-19, conventional sampling methods like ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced Learning) tend to yield only modest accuracy levels. To address another problem like finding the optimal features, this study proposes a novel approach that combines oversampling techniques with genetic feature selection (GFs) using laboratory data. This innovative method aims to construct machine -learning clinical prediction models for the identification of COVID-19 infected patients, leveraging two widely recognized datasets by using hyper ADASYN over -sampling and genetic feature selection, stands out for its unprecedented precision in identifying relevant features crucial for accurate predictions. Unlike the traditional approach, it can solve the class imbalance problem and tune the feature space to bring about a dramatic increase in accuracy, precision, recall, and overall predictive performance by using our hypermodel. Our approach significantly enhanced the performance of the classifier, and the Random Forest (RF) model with n trees classifies accurately to the limit of 99%, with precision 99%, recall 99%, and F1 -score 99% for each of the datasets. Decision Tree (DT) model achieved 92% with all metrics for Dataset I, and 95% with all metrics for Dataset II. Multilayer Perceptron (MLP) achieved 99% with all metrics, respectively, for both datasets. Gradient Boosting (XGB) achieved 97% for all metrics with dataset I and 98% with all metrics for dataset II. These results underscore the efficacy of our proposed method in balancing COVID-19 datasets and enhancing predictive accuracy.
  • [ X ]
    Öğe
    Enhancing predictive performance in Covid-19 healthcare datasets: A case study based on hyper adasyn over-samplingand genetic feature selection
    (2024) Mohammedqasim, Hayder; Jasim, Abdulrahman Ahmed; Mohammedqasem, Roa'a; Ata, Oğuz
    Predictive analytics is paramount in the health industry, where it finds its wide application, in that it helps increase the forecast's accuracy level based on big data. Most of the time, there is a tendency toward the imbalance of the datasets in healthcare. In this study, two COVID-19 datasets from Kaggle were used as a case study of dataset imbalance. In such scenarios of imbalanced datasets like COVID-19, conventional sampling methods like ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced Learning) tend to yield only modest accuracy levels. To address another problem like finding the optimal features, this study proposes a novel approach that combines oversampling techniques with genetic feature selection (GFs) using laboratory data. This innovative method aims to construct machine -learning clinical prediction models for the identification of COVID-19 infected patients, leveraging two widely recognized datasets by using hyper ADASYN over -sampling and genetic feature selection, stands out for its unprecedented precision in identifying relevant features crucial for accurate predictions. Unlike the traditional approach, it can solve the class imbalance problem and tune the feature space to bring about a dramatic increase in accuracy, precision, recall, and overall predictive performance by using our hypermodel. Our approach significantly enhanced the performance of the classifier, and the Random Forest (RF) model with "n" trees classifies accurately to the limit of 99%, with precision 99%, recall 99%, and F1 -score 99% for each of the datasets. Decision Tree (DT) model achieved 92% with all metrics for Dataset I, and 95% with all metrics for Dataset II. Multilayer Perceptron (MLP) achieved 99% with all metrics, respectively, for both datasets. Gradient Boosting (XGB) achieved 97% for all metrics with dataset I and 98% with all metrics for dataset II. These results underscore the efficacy of our proposed method in balancing COVID-19 datasets and enhancing predictive accuracy.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Enhancing self-care prediction in children with impairments: a novel framework for addressing imbalance and high dimensionality
    (2024) Alyasin, Eman Ibrahim; Ata, Oğuz; Mohammedqasim, Hayder; Mohammedqasem, Roa'a
    Addressing the challenges in diagnosing and classifying self-care difficulties in exceptional children's healthcare systems is crucial. The conventional diagnostic process, reliant on professional healthcare personnel, is time-consuming and costly. This study introduces an intelligent approach employing expert systems built on artificial intelligence technologies, specifically random forest, decision tree, support vector machine, and bagging classifier. The focus is on binary and multi-label SCADI datasets. To enhance model performance, we implemented resampling and data shuffling methods to tackle data imbalance and generalization issues, respectively. Additionally, a hyper framework feature selection strategy was applied, using mutual-information statistics and random forest recursive feature elimination (RF-RFE) based on a forward elimination method. Prediction performance and feature significance experiments, employing Shapley value explanation (SHAP), demonstrated the effectiveness of the proposed model. The framework achieved a remarkable overall accuracy of 99% for both datasets used with the fewest number of unique features reported in contemporary literature. The use of hyperparameter tuning for RF modeling further contributed to this significant improvement, suggesting its potential utility in diagnosing self-care issues within the medical industry.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Multi-objective deep learning framework for COVID-19 dataset problems
    (2023) Mohammedqasem, Roa'a; Mohammedqasim, Hayder; Asad Ali Biabani, Sardar; Ata, Oğuz; Alomary, Mohammad N.; Almehmadi, Mazen; Amer Alsairi, Ahad; Azam Ansari, Mohammad
    Background: It has been reported that a deadly virus known as COVID-19 has arisen in China and has spread rapidly throughout the country. The globe was shattered, and a large number of people on the planet died. It quickly became an epidemic due to the absence of apparent symptoms and causes for patients, confusion appears due to the lack of sufficient laboratory results, and its intelligent algorithms were used to make decisions on clinical outcomes. Methods: This study developed a new framework for medical datasets with high missing values based on deep-learning optimization models. The robustness of our model is achieved by combining: Data Missing Care (DMC) Framework to overcome the problem of high missing data in medical datasets, and Grid-Search optimization used to develop an improved deep predictive training model for patients with COVID-19 by setting multiple hyperparameters and tuning assessments on three deep learning algorithms: ANN (Artificial Neural Network), CNN (Convolutional Neural Network), and Recurrent Neural Networks (RNN). Results: The experiment results conducted on three medical datasets showed the effectiveness of our hybrid approach and an improvement in accuracy and efficiency since all the evaluation metrics were close to ideal for all deep learning classifiers. We got the best evaluation in terms of accuracy 98%, precession 98.5%, F1-score 98.6%, and ROC Curve (95% to 99%) for the COVID-19 dataset provided by GitHub. The second dataset is also Covid-19 provided by Albert Einstein Hospital with high missing data after applying our approach the accuracy reached more than 91%. Third dataset for Cervical Cancer provided by Kaggle all the evaluation metrics reached more than 95%. Conclusions: The proposed formula for processing this type of data can replace the traditional formats in optimization while providing high accuracy and less time to classify patients. Whereas, the experimental results of our approach, supported by comprehensive statistical analysis, can improve the overall evaluation performance of the problem of classifying medical data sets with high missing values. Therefore, this approach can be used in many areas such as energy management, environment, and medicine.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network
    (Computers and Electrical Engineering, 2022) Ata, Oğuz; Mohammedqasem, Roa'a; Mohammedqasim, Hayder
    The coronavirus pandemic has affected people all over the world and posed a great challenge to international health systems. To aid early detection of coronavirus disease-2019 (COVID-19), this study proposes a real-time detection system based on the Internet of Things framework. The system collects real-time data from users to determine potential coronavirus cases, analyses treatment responses for people who have been treated, and accurately collects and analyses the datasets. Artificial intelligence-based algorithms are an alternative decision-making solution to extract valuable information from clinical data. This study develops a deep learning optimisation system that can work with imbalanced datasets to improve the classification of patients. A synthetic minority oversampling technique is applied to solve the problem of imbalance, and a recursive feature elimination algorithm is used to determine the most effective features. After data balance and extraction of features, the data are split into training and testing sets for validating all models. The experimental predictive results indicate good stability and compatibility of the models with the data, providing maximum accuracy of 98% and precision of 97%. Finally, the developed models are demonstrated to handle data bias and achieve high classification accuracy for patients with COVID-19. The findings of this study may be useful for healthcare organisations to properly prioritise assets.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim