Yazar "Mohammedqasim, Hayder" seçeneğine göre listele
Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Diagnosing coronary artery disease on the basis of hard ensemble voting optimization(2022) Mohammedqasim, Hayder; Mohammedqasim, Roa'a; Ata, Oğuz; Alyasin, Eman IbrahimBackground and Objectives: Recently, many studies have focused on the early diagnosis of coronary artery disease (CAD), which is one of the leading causes of cardiac-associated death worldwide. The effectiveness of the most important features influencing disease diagnosis determines the performance of machine learning systems that can allow for timely and accurate treatment. We performed a Hybrid ML framework based on hard ensemble voting optimization (HEVO) to classify patients with CAD using the Z-Alizadeh Sani dataset. All categorical features were converted to numerical forms, the synthetic minority oversampling technique (SMOTE) was employed to overcome imbalanced distribution between two classes in the dataset, and then, recursive feature elimination (RFE) with random forest (RF) was used to obtain the best subset of features. Materials and Methods: After solving the biased distribution in the CAD data set using the SMOTE method and finding the high correlation features that affected the classification of CAD patients. The performance of the proposed model was evaluated using grid search optimization, and the best hyperparameters were identified for developing four applications, namely, RF, AdaBoost, gradient-boosting, and extra trees based on an HEV classifier. Results: Five fold cross-validation experiments with the HEV classifier showed excellent prediction performance results with the 10 best balanced features obtained using SMOTE and feature selection. All evaluation metrics results reached > 98% with the HEV classifier, and the gradient-boosting model was the second best classification model with accuracy = 97% and F1-score = 98%. Conclusions: When compared to modern methods, the proposed method perform well in diagnosing coronary artery disease, and therefore, the proposed method can be used by medical personnel for supplementary therapy for timely, accurate, and efficient identification of CAD cases in suspected patients.Öğe e-Diagnostic system for diabetes disease prediction on an IoMT environment-based hyper AdaBoost machine learning model(Springer, 2024) Jasim, Abdulrahman Ahmed; Hazim, Layth Rafea; Mohammedqasim, Hayder; Mohammedqasem, Roa’a; Ata, Oğuz; Salman, Omar HusseinOne of the most fatal and serious diseases that humans have encountered is diabetes, an illness affecting thousands of individuals yearly. In this era of digital systems, diabetes prediction based on machine learning (ML) is gaining high momentum. One of the benefits of treating patients early in the course of their noncommunicable diseases (NCDs) is that they can avoid costly therapies when the illness worsens later in life. Incidentally, diabetes is complicated by the dearth of medical professionals in underserved areas, such as distant rural communities. In these situations, the Internet of Medical Things and machine learning (ML) models can be used to offer healthcare practitioners the necessary prediction tools to more effectively and timely make decisions, thus assisting the early identification and diagnosis of NCDs. In this study, four conventional and hyper-AdaBoost ML models were trained and tested on the PIMA Indian Diabetes dataset. Patients with diabetes were classified on the basis of laboratory findings. Pre-processing tasks, such as the handling of imbalanced data and missing values, were performed prior to feature importance and normalisation activities. The algorithm with the best performance was examined using precision, accuracy, F1, recall and area under the curve metrics. Then, all ML models were hyper parametrically tuned via grid search to optimise their performance and reduce their error times. The decision process was also evaluated to further enhance the models. The AdaBoost-ET model performed even when features were not selected for binary classification. The model proposed in this study can predict diabetes with unprecedented high accuracy compared with the models in previous studies.Öğe ENHANCING PREDICTIVE PERFORMANCE IN COVID-19 HEALTHCARE DATASETS: A CASE STUDY BASED ON HYPER ADASYN OVER-SAMPLING AND GENETIC FEATURE SELECTION(Taylors Univ Sdn Bhd, 2024) Mohammedqasim, Hayder; Jasim, Abdulrahman Ahmed; Mohammedqasem, Roa'a; Ata, OguzPredictive analytics is paramount in the health industry, where it finds its wide application, in that it helps increase the forecast's accuracy level based on big data. Most of the time, there is a tendency toward the imbalance of the datasets in healthcare. In this study, two COVID-19 datasets from Kaggle were used as a case study of dataset imbalance. In such scenarios of imbalanced datasets like COVID-19, conventional sampling methods like ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced Learning) tend to yield only modest accuracy levels. To address another problem like finding the optimal features, this study proposes a novel approach that combines oversampling techniques with genetic feature selection (GFs) using laboratory data. This innovative method aims to construct machine -learning clinical prediction models for the identification of COVID-19 infected patients, leveraging two widely recognized datasets by using hyper ADASYN over -sampling and genetic feature selection, stands out for its unprecedented precision in identifying relevant features crucial for accurate predictions. Unlike the traditional approach, it can solve the class imbalance problem and tune the feature space to bring about a dramatic increase in accuracy, precision, recall, and overall predictive performance by using our hypermodel. Our approach significantly enhanced the performance of the classifier, and the Random Forest (RF) model with n trees classifies accurately to the limit of 99%, with precision 99%, recall 99%, and F1 -score 99% for each of the datasets. Decision Tree (DT) model achieved 92% with all metrics for Dataset I, and 95% with all metrics for Dataset II. Multilayer Perceptron (MLP) achieved 99% with all metrics, respectively, for both datasets. Gradient Boosting (XGB) achieved 97% for all metrics with dataset I and 98% with all metrics for dataset II. These results underscore the efficacy of our proposed method in balancing COVID-19 datasets and enhancing predictive accuracy.Öğe Enhancing predictive performance in Covid-19 healthcare datasets: A case study based on hyper adasyn over-samplingand genetic feature selection(2024) Mohammedqasim, Hayder; Jasim, Abdulrahman Ahmed; Mohammedqasem, Roa'a; Ata, OğuzPredictive analytics is paramount in the health industry, where it finds its wide application, in that it helps increase the forecast's accuracy level based on big data. Most of the time, there is a tendency toward the imbalance of the datasets in healthcare. In this study, two COVID-19 datasets from Kaggle were used as a case study of dataset imbalance. In such scenarios of imbalanced datasets like COVID-19, conventional sampling methods like ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced Learning) tend to yield only modest accuracy levels. To address another problem like finding the optimal features, this study proposes a novel approach that combines oversampling techniques with genetic feature selection (GFs) using laboratory data. This innovative method aims to construct machine -learning clinical prediction models for the identification of COVID-19 infected patients, leveraging two widely recognized datasets by using hyper ADASYN over -sampling and genetic feature selection, stands out for its unprecedented precision in identifying relevant features crucial for accurate predictions. Unlike the traditional approach, it can solve the class imbalance problem and tune the feature space to bring about a dramatic increase in accuracy, precision, recall, and overall predictive performance by using our hypermodel. Our approach significantly enhanced the performance of the classifier, and the Random Forest (RF) model with "n" trees classifies accurately to the limit of 99%, with precision 99%, recall 99%, and F1 -score 99% for each of the datasets. Decision Tree (DT) model achieved 92% with all metrics for Dataset I, and 95% with all metrics for Dataset II. Multilayer Perceptron (MLP) achieved 99% with all metrics, respectively, for both datasets. Gradient Boosting (XGB) achieved 97% for all metrics with dataset I and 98% with all metrics for dataset II. These results underscore the efficacy of our proposed method in balancing COVID-19 datasets and enhancing predictive accuracy.Öğe Enhancing self-care prediction in children with impairments: a novel framework for addressing imbalance and high dimensionality(2024) Alyasin, Eman Ibrahim; Ata, Oğuz; Mohammedqasim, Hayder; Mohammedqasem, Roa'aAddressing the challenges in diagnosing and classifying self-care difficulties in exceptional children's healthcare systems is crucial. The conventional diagnostic process, reliant on professional healthcare personnel, is time-consuming and costly. This study introduces an intelligent approach employing expert systems built on artificial intelligence technologies, specifically random forest, decision tree, support vector machine, and bagging classifier. The focus is on binary and multi-label SCADI datasets. To enhance model performance, we implemented resampling and data shuffling methods to tackle data imbalance and generalization issues, respectively. Additionally, a hyper framework feature selection strategy was applied, using mutual-information statistics and random forest recursive feature elimination (RF-RFE) based on a forward elimination method. Prediction performance and feature significance experiments, employing Shapley value explanation (SHAP), demonstrated the effectiveness of the proposed model. The framework achieved a remarkable overall accuracy of 99% for both datasets used with the fewest number of unique features reported in contemporary literature. The use of hyperparameter tuning for RF modeling further contributed to this significant improvement, suggesting its potential utility in diagnosing self-care issues within the medical industry.Öğe Multi-objective deep learning framework for COVID-19 dataset problems(2023) Mohammedqasem, Roa'a; Mohammedqasim, Hayder; Asad Ali Biabani, Sardar; Ata, Oğuz; Alomary, Mohammad N.; Almehmadi, Mazen; Amer Alsairi, Ahad; Azam Ansari, MohammadBackground: It has been reported that a deadly virus known as COVID-19 has arisen in China and has spread rapidly throughout the country. The globe was shattered, and a large number of people on the planet died. It quickly became an epidemic due to the absence of apparent symptoms and causes for patients, confusion appears due to the lack of sufficient laboratory results, and its intelligent algorithms were used to make decisions on clinical outcomes. Methods: This study developed a new framework for medical datasets with high missing values based on deep-learning optimization models. The robustness of our model is achieved by combining: Data Missing Care (DMC) Framework to overcome the problem of high missing data in medical datasets, and Grid-Search optimization used to develop an improved deep predictive training model for patients with COVID-19 by setting multiple hyperparameters and tuning assessments on three deep learning algorithms: ANN (Artificial Neural Network), CNN (Convolutional Neural Network), and Recurrent Neural Networks (RNN). Results: The experiment results conducted on three medical datasets showed the effectiveness of our hybrid approach and an improvement in accuracy and efficiency since all the evaluation metrics were close to ideal for all deep learning classifiers. We got the best evaluation in terms of accuracy 98%, precession 98.5%, F1-score 98.6%, and ROC Curve (95% to 99%) for the COVID-19 dataset provided by GitHub. The second dataset is also Covid-19 provided by Albert Einstein Hospital with high missing data after applying our approach the accuracy reached more than 91%. Third dataset for Cervical Cancer provided by Kaggle all the evaluation metrics reached more than 95%. Conclusions: The proposed formula for processing this type of data can replace the traditional formats in optimization while providing high accuracy and less time to classify patients. Whereas, the experimental results of our approach, supported by comprehensive statistical analysis, can improve the overall evaluation performance of the problem of classifying medical data sets with high missing values. Therefore, this approach can be used in many areas such as energy management, environment, and medicine.Öğe Novel hybrid classification model for multi-class imbalanced lithology dataset(Elsevier GmbH, 2022) Alyasin, Eman Ibrahim; Ata, Oğuz; Mohammedqasim, HayderDeep learning methods and applications assist geologists in predicting and identifying lithologies in different surveys, hence lowering operational costs and uptime. This allows accurate data analysis and completion of scientific research on data obtained at geologically different places. This study used 4 lithologies datasets with high dimensionality and multiclass imbalance problems for analysis and classification. The imbalance of data classification is one of the most important problems facing current data analysis. Data imbalance can considerably influence classification performance, especially when dealing with other difficulty variables such as the presence of overlapping class distributions. This impact is especially obvious in multi-class conditions when mutual imbalance relations across classes complicate matters even further. Moreover, the problem of high dimensionality can lead to increased computing complexity and overfitting, and thus these issues can affect classification performance. To overcome these problems, we developed a new hybrid deep learning multi-class imbalanced learning method that combines Synthetic Minority Oversampling (SMOTE) to resample the data, and Recursive Feature Elimination (RFE) to identify the most useful predictive features. Finally, we believe that our developments can help improve geology research by providing accurate classification and rapid answers about interpreting data obtained in various study areas.Öğe Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network(Computers and Electrical Engineering, 2022) Ata, Oğuz; Mohammedqasem, Roa'a; Mohammedqasim, HayderThe coronavirus pandemic has affected people all over the world and posed a great challenge to international health systems. To aid early detection of coronavirus disease-2019 (COVID-19), this study proposes a real-time detection system based on the Internet of Things framework. The system collects real-time data from users to determine potential coronavirus cases, analyses treatment responses for people who have been treated, and accurately collects and analyses the datasets. Artificial intelligence-based algorithms are an alternative decision-making solution to extract valuable information from clinical data. This study develops a deep learning optimisation system that can work with imbalanced datasets to improve the classification of patients. A synthetic minority oversampling technique is applied to solve the problem of imbalance, and a recursive feature elimination algorithm is used to determine the most effective features. After data balance and extraction of features, the data are split into training and testing sets for validating all models. The experimental predictive results indicate good stability and compatibility of the models with the data, providing maximum accuracy of 98% and precision of 97%. Finally, the developed models are demonstrated to handle data bias and achieve high classification accuracy for patients with COVID-19. The findings of this study may be useful for healthcare organisations to properly prioritise assets.