Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mutlag, Wamidh K." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Boosting Multiverse Optimizer by Simulated Annealing for Dimensionality Reduction
    (Airlangga University, 2025) Mutlag, Wamidh K.; Mazher, Wamidh Jalil; Ibrahim, Hadeel Tariq; Uçan, Osman Nuri
    Background: Because of The Multi-Verse Optimizer (MVO) has gained popularity in feature selection due to its strong global and local search capabilities. However, its effectiveness diminishes when tackling high-dimensional datasets due to the exponential growth of the search space and a tendency for premature convergence. Objective: This study aims to enhance MVO’s performance by integrating it with the Simulated Annealing Algorithm (SAA), creating a hybrid model that improves search convergence and optimizes feature selection efficiency. Methods: A High-level Relay Hybrid (HRH) architecture is proposed, where MVO identifies promising regions of the feature space and passes them to SAA for local refinement. The resulting MVOSA-FS model was evaluated on ten high-dimensional benchmark datasets from the Arizona State University (ASU) repository. Support Vector Machine (SVM) classifiers were used to assess the classification accuracy. MVOSA-FS achieved superior performance compared to six state-of-the-art feature selection algorithms: Atom Search Optimization (ASO), Equilibrium Optimizer (EO), Emperor Penguin Optimizer (EPO), Monarch Butterfly Optimization (MBO), Satin Bowerbird Optimizer (SBO), and Sine Cosine Algorithm (SCA). Results: The proposed model yielded the lowest average classification error rate (1.45%), smallest standard deviation (0.008), and most compact feature subset (0.91%). The hybrid MVOSA-FS model effectively balances exploration and exploitation, delivering robust and scalable performance in feature selection for high-dimensional data. Conclusion: This hybridization approach demonstrates improved classification accuracy and reduced computational burden.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim