Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Nartey, Felix" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Empowering Health and Well-being: IoT-Driven Vital Signs Monitoring in Educational Institutions and Elderly Homes Using Machine Learning
    (Forex Publication, 2024) Duodu, Nana Yaw; Patel, Warish D.; Koyuncu, Hakan; Nartey, Felix; Torgby, Wisdom
    IoT-based EHRs use machine learning technology to automate real-time patient-centered records more securely for authorized users. Background: In this era of pandemics, predictive healthcare systems are necessary for private and public healthcare delivery to predict early cancer, COVID-19, hypertension, and fever in Educational Institutions and Elderly Homes. IoT-Based EHRs bring healthcare delivery to the doorsteps of educational home facilities users, thereby reducing the time required to access healthcare and minimizing direct physical interaction between individuals seeking healthcare and their providers. Method: This research work proposed a real-time intelligent IoT-based EHR system that generates vital signs of students within the educational environment using contactless sensors (Raspberry Pi Noir Camera, rPPG camera) and contacted wearable sensors composed of enzymatic sensor, immunogens, and Nano sensors to detect cancer (Leukaemia). AFTER CAPTURING THE PHYSIOLOGICAL DATA, THE in-build EWS plots system determines the condition and further triggers the criticality (abnormality) in health status. Discussion: For effective health status prediction by the proposed plan, the vital sign dataset was used to train a model for the proposed method. Among the best-performing models, the random forest algorithm proved a better model, with an accuracy of 99.66% and an error rate of 0.34%. Conclusion: The Home HMS seeks to improve health prediction in institutional homes for users' overall well-being. © 2024 by the Nana Yaw Duodu, Warish D. Patel, Hakan Koyuncu, Felix Nartey, Wisdom Torgby.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim