Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Oleiwi, Zahra Hasan" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    MEMF-Net: A Mega-Ensemble of Multi-Feature CNNs for Classification of Breast Histopathological Images
    (College of Education, Al-Iraqia University, 2025) Abdulaal, Alaa Hussein; Abdulwahhab, Ali H.; Breesam, Aqeel Majeed; Oleiwi, Zahra Hasan; Yassin, Riyam Ali; Valizadeh, Morteza; Mohsin, Saja Nafea
    Pathological anatomical images play a pivotal role in diagnosing diseases, notably breast cancer, which affects women globally. These images, obtained through biopsies or post-mortem examinations, are preserved to maintain their structural integrity. Software tools, like computer-aided diagnosis, aid doctors in early detection and treatment planning, contributing to reduced mortality rates. In this context, convolutional neural networks (CNNs) have emerged as valuable tools for diagnosing benign and malignant breast cancers. This paper introduces a Mega Ensemble Net method, leveraging multi-scale combination features on the breast histopathology dataset. Three fine-tuned deep learning models, namely ResNet-18, ResNet-34, and ResNet-50, are integrated into this method. Techniques such as patch extraction for data augmentation, dataset amalgamation, and transfer learning bolster the method’s capabilities. Fusing extracted patches with primary images enhances the method’s robustness and adaptability, offering diverse perspectives and intricate details for nuanced class distinctions. BACH and BreaKHis datasets have been used to evaluate the Mega Net. During four-fold cross-validation on the test folds, the Mega-Net demonstrates 99% test-set accuracy in the full image and 98% test-set accuracy in patches within the multi-classification BACH dataset and 99% test-set accuracy within the binary classification BreaKHis dataset. Moreover, the MEMF-Net achieved a multi-classification test accuracy of 98.95% across an optimal selected MEMF model in validation testing images.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim