Yazar "Qasim, Mohammed N." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Breast sentinel lymph node cancer detection from mammographic images based on quantum wavelet transform and an atrous pyramid convolutional neural network(Hindawi Limited, 2022) Qasim, Mohammed N.; Mohammed, Tareq Abed; Bayat, OğuzThis study proposes an optimal approach to reduce noise in mammographic images and to identify salt-and-pepper, Gaussian, Poisson, and impact noises to determine the exact mass detection operation after these noise reductions. It therefore offers a method for noise reduction operations called quantum wavelet transform filtering and a method for precision mass segmentation called the image morphological operations in mammographic images based on the classification with an atrous pyramid convolutional neural network (APCNN) as a deep learning model. The hybrid approach called a QWT-APCNN is evaluated in terms of criteria compared with previous methods such as peak signal-to-noise ratio (PSNR) and mean-squared error (MSE) in noise reduction and accuracy of detection for mass area recognition. The proposed method presents more performance of noise reduction and segmentation in comparison with state-of-the-art methods. In this paper, we used the APCNN based on the convolutional neural network (CNN) as a new deep learning method, which is able to extract features and perform classification simultaneously, but it is intended as far as possible, empirically for the purpose of this research to be able to determine breast cancer and then identify the exact area of the masses and then classify them according to benign, malignant, and suspicious classes. The obtained results presented that the proposed approach has better performance than others based on some evaluation criteria such as accuracy with 98.57%, sensitivity with 90%, specificity with 85%, and also ROC and AUC with a rate of 86.77.Öğe Hybrid solution of challenges future problems in the new generation of the artificial intelligence industry used operations research industrial processes(Association for Computing Machinery, 2021) Mohammed, Tareq Abed; Qasim, Mohammed N.; Bayat, OguzKey technologies such as a new generation of industrial systems highly depends on artificial intelligence, and electronic physical systems that can digitize the entire supply chain together with data mining, machine learning, and more. At present, uses of artificial intelligence-based solutions are very important to improve the accuracy and efficiency of production processes. Artificial intelligence (AI) is playing a key role in the fourth industrial revolution, and we see significant improvements in different methods of machine learning. Artificial intelligence is widely used by practitioner engineers to solve various problems. This journal provides an international forum for quick articles that describes the practical application of artificial intelligence in all areas of mechanical engineering. Many researchers cited the development of technology in industrial fields to reduce problems in industry. Both the Operations Research (OR) community and Artificial Intelligence (AI) show that these problems are still interesting. While AI focuses linearly on increasing production and mitigating industry difficulties that may be seen as a revolution in the future. AI techniques offer a richer and more flexible presentation of real problems. The article presents the architecture of the industrial laboratory and the challenges associated with the use of artificial intelligence in industrial processes. © 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.