Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Thary Al-Ghrairi, Assad H." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Detection of epileptic seizure using EEG signals analysis based on deep learning techniques
    (Elsevier, 2024) Abdulwahhab, Ali H.; Abdulaal, Alaa Hussein; Thary Al-Ghrairi, Assad H.; Mohammed, Ali Abdulwahhab; Valizadeh, Morteza
    The brain neurons' electrical activities represented by Electroencephalogram (EEG) signals are the most common data for diagnosing Epilepsy seizure, which is considered a chronic nervous disorder that cannot be controlled medically using surgical operation or medications with more than 40 % of Epilepsy seizure case. With the progress and development of artificial intelligence and deep learning techniques, it becomes possible to detect these seizures over the observation of the non-stationary-dynamic EEG signals, which contain important information about the mental state of patients. This paper provides a concerted deep machine learning model consisting of two simultaneous techniques detecting the activity of epileptic seizures using EEG signals. The time-frequency image of EEG waves and EEG raw waves are used as input components for the convolution neural network (CNN) and recurrent neural network (RNN) with long- and short-term memory (LSTM). Two processing signal methods have been used, Short-Time Fourier Transform (STFT) and Continuous Wavelet Transformation (CWT), have been used for generating spectrogram and scalogram images with sizes of 77 × 75 and 32 × 32, respectively. The experimental results showed a detection accuracy of 99.57 %, 99.57 % using CWT Scalograms, and 99.26 %, 97.12 % using STFT spectrograms as CNN input for the Bonn University dataset and the CHB-MIT dataset, respectively. Thus, the proposed models provide the ability to detect epileptic seizures with high success compared to previous studies.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim