Yazar "Valizadeh, Morteza" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Detection of epileptic seizure using EEG signals analysis based on deep learning techniques(Elsevier, 2024) Abdulwahhab, Ali H.; Abdulaal, Alaa Hussein; Thary Al-Ghrairi, Assad H.; Mohammed, Ali Abdulwahhab; Valizadeh, MortezaThe brain neurons' electrical activities represented by Electroencephalogram (EEG) signals are the most common data for diagnosing Epilepsy seizure, which is considered a chronic nervous disorder that cannot be controlled medically using surgical operation or medications with more than 40 % of Epilepsy seizure case. With the progress and development of artificial intelligence and deep learning techniques, it becomes possible to detect these seizures over the observation of the non-stationary-dynamic EEG signals, which contain important information about the mental state of patients. This paper provides a concerted deep machine learning model consisting of two simultaneous techniques detecting the activity of epileptic seizures using EEG signals. The time-frequency image of EEG waves and EEG raw waves are used as input components for the convolution neural network (CNN) and recurrent neural network (RNN) with long- and short-term memory (LSTM). Two processing signal methods have been used, Short-Time Fourier Transform (STFT) and Continuous Wavelet Transformation (CWT), have been used for generating spectrogram and scalogram images with sizes of 77 × 75 and 32 × 32, respectively. The experimental results showed a detection accuracy of 99.57 %, 99.57 % using CWT Scalograms, and 99.26 %, 97.12 % using STFT spectrograms as CNN input for the Bonn University dataset and the CHB-MIT dataset, respectively. Thus, the proposed models provide the ability to detect epileptic seizures with high success compared to previous studies.Öğe Unsupervised histopathological sub-image analysis for breast cancer diagnosis using variational autoencoders, clustering, and supervised learning(Mustansiriyah University College of Engineering, 2024) Abdulaal, Alaa Hussein; Valizadeh, Morteza; Yassin, Riyam Ali; Albaker, Baraa M.; Abdulwahhab, Ali H.; Amirani, Mehdi Chehel; Shah, A. F. M. ShahenThis paper presents an integrated approach to breast cancer diagnosis that combines unsupervised and supervised learning techniques. The method involves using a pre-trained VGG19 model to process sub-images from the BreaKHis dataset, divided into nine parts for comprehensive analysis. This will be followed by a complete description of the architecture and workings of the variational Autoencoder (VAE) used for unsupervised Learning. The encoder network maps the input features to lower dimensions, capturing the most essential information. VAE learns a compressed representation of sub-images, facilitating a more profound understanding of underlying patterns and structures. For this reason, we then employ k-means clustering on the encoded representation to find naturally occurring clusters in our data set comprising a histopathological image. Every single sub-image is later fed into the VGG19-SVM model for classification purposes. During magnification at 100x, this model has attained a fantastic accuracy rate of 98.56%. Combining unsupervised analysis with VAE/k-means clustering and supervised classification with VGG19/SVM can integrate information from both methods, thereby improving the accuracy and robustness of such a task as sub-image classification in breast cancer histopathology.