Motor imagery EEG classification using algorithms and machine learning for ALS disease

dc.contributor.advisorİnan, Timur
dc.contributor.authorHameed, Mohammed Majeed Hameed
dc.date.accessioned2023-02-15T13:07:58Z
dc.date.available2023-02-15T13:07:58Z
dc.date.issued2022en_US
dc.date.submitted2022
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilişim Teknolojileri Ana Bilim Dalıen_US
dc.description.abstractThe cerebrum PC interface brings issues to light of basic ailments influencing the human sensory system. The human sensory system is a mind boggling organization of neurons with a simple flagging component. The cerebrum PC interface permits the framework to keep human mind action to recognize sickness utilizing AI and PC vision. BCI information is alluded to as engine symbolism. Engine symbolism is non-fixed information that is planned regarding recurrence and time. In engine picture, recurrence is separated into various sign groups like alpha, beta, gamma, and delta. Because of the great component of information and clamor relics, band division with recoded signal is a basic undertaking. The information planning and vector development processes require information decrease, however the information decrease process loses some band esteem and can't correct the exact band of sign for the location of ailment and explicit sickness problems. This review centers around highlight extraction from engine symbolism EEG information and characterization of EEG information with human sickness.en_US
dc.identifier.citationHameed Hameed, Mohammed Majeed. (2022). Motor imagery EEG classification using algorithms and machine leaning for ALS disease. (Yayınlanmamış yüksek lisans tezi). Altınbaş Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12939/3337
dc.identifier.yoktezid768353
dc.institutionauthorHameed, Mohammed Majeed Hameed
dc.language.isoen
dc.publisherAltınbaş Üniversitesi / Lisansüstü Eğitim Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMotor Imagery EEGen_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectBrain-Computer Interfaceen_US
dc.subjectClassification Of EEGen_US
dc.titleMotor imagery EEG classification using algorithms and machine learning for ALS disease
dc.typeMaster Thesis

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin / Full Text
Boyut:
1.65 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama:

Koleksiyon