Integration between network intrusion detection and machine learning techniques to optimizing network security

dc.contributor.advisorKurnaz, Sefer
dc.contributor.authorElzaridi, Khalid Mohammed Abdullah
dc.date.accessioned2024-11-08T12:04:18Z
dc.date.available2024-11-08T12:04:18Z
dc.date.issued2024en_US
dc.date.submitted2024
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractIn an increasingly linked world beset with cybersecurity risks, the necessity for powerful intrusion detection systems (IDS) is paramount. This thesis proposes a fresh approach to IDS development. using modern machine learning algorithms and feature selection techniques to boost detection accuracy and resistance. Drawing upon lessons from earlier research, we address fundamental flaws in existing IDS approaches. emphasis on scalability and susceptibility to advanced assaults. Our suggested hybrid model, incorporating Random Forest, Gradient Boosting Machines, and Neural Networks, obtains a remarkable accuracy rate of 96% in identifying network intrusions. Utilizing the Intrusion Detection Evaluation Dataset (CIC-IDS2017), Our trials illustrate the efficacy of the proposed technique in realworld circumstances. This research contributes to the evolution of cybersecurity techniques by delivering practical insights for strengthening the security and resilience of digital infrastructures.en_US
dc.description.abstractSiber güvenlik riskleriyle kuşatılmış, giderek bağlantılı hale gelen bir dünyada, güçlü izinsiz giriş tespit sistemlerine (IDS) duyulan ihtiyaç çok önemlidir. Bu tez IDS gelişimine yeni bir yaklaşım önermektedir. algılama doğruluğunu ve direncini artırmak için modern makine öğrenimi algoritmalarını ve özellik seçme tekniklerini kullanıyor. Daha önceki araştırmalardan ders alarak mevcut IDS yaklaşımlarındaki temel kusurları ele alıyoruz. ölçeklenebilirliğe ve gelişmiş saldırılara karşı duyarlılığa vurgu. Rastgele Orman, Gradyan Arttırma Makineleri ve Sinir Ağlarını içeren önerdiğimiz hibrit modelimiz, ağ izinsiz girişlerini tespit etmede %96 gibi dikkate değer bir doğruluk oranı elde ediyor. İzinsiz Giriş Tespiti Değerlendirme Veri Kümesini (CIC-IDS2017) kullanan denemelerimiz, önerilen tekniğin gerçek dünya koşullarındaki etkinliğini göstermektedir. Bu araştırma, dijital altyapıların güvenliğini ve dayanıklılığını güçlendirmeye yönelik pratik bilgiler sunarak siber güvenlik tekniklerinin gelişimine katkıda bulunuyor.en_US
dc.identifier.citationElzaridi, K. M. A. (2024). Integration between network intrusion detection and machine learning techniques to optimizing network security. (Yayınlanmamış yüksek lisans tezi). Altınbaş Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12939/4985
dc.identifier.yoktezid884021
dc.institutionauthorElzaridi, Khalid Mohammed Abdullah
dc.language.isoen
dc.publisherAltınbaş Üniversitesi / Lisansüstü Eğitim Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIntrusion Detection Systemsen_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectFeature Selectionen_US
dc.subjectCybersecurityen_US
dc.subjectHybrid Modelen_US
dc.subjectSaldırı Tespit Sistemlerien_US
dc.subjectMakine Öğrenme Algoritmalarıen_US
dc.subjectÖzellik Seçimien_US
dc.subjectSiber Güvenliken_US
dc.subjectHibrit Modelen_US
dc.titleIntegration between network intrusion detection and machine learning techniques to optimizing network security
dc.typeMaster Thesis

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin / Full Text
Boyut:
1.26 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama:

Koleksiyon