Using fog computing to reduce time and energy in information networks
dc.contributor.advisor | Ibrahim, Abdullahi Abdu | |
dc.contributor.author | Abbas, Ahmed Mohammed Redha | |
dc.date.accessioned | 2022-06-22T13:16:39Z | |
dc.date.available | 2022-06-22T13:16:39Z | |
dc.date.issued | 2020 | en_US |
dc.date.submitted | 2020 | |
dc.department | Enstitüler, Lisansüstü Eğitim Enstitüsü, Bilişim Teknolojileri Ana Bilim Dalı | en_US |
dc.description.abstract | In these years, cloud-computing technology is considered one of the most important technologies that are directed to finding solutions to communication and processing problems, and also expanding the work of cloud computing networks from delaying processing time and limited resources. In our research, we explain the work of fog technology within a simulation system consisting of cloud, fog, and mobile networks. Moreover, we implemented (FGA) algorithm to get the best results from reducing the energy consumed and dividing the distribution of tasks implementation between the different networks, and to reduce the latency time. | en_US |
dc.identifier.citation | Abbas, Ahmed Mohammed Redha. (2020). Using fog computing to reduce time and energy in information networks. (Yayınlanmamış yüksek lisans tezi). Altınbaş Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul. | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12939/2510 | |
dc.identifier.yoktezid | 672462 | |
dc.institutionauthor | Abbas, Ahmed Mohammed Redha | |
dc.language.iso | en | |
dc.publisher | Altınbaş Üniversitesi / Lisansüstü Eğitim Enstitüsü | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fog Computing | en_US |
dc.subject | Cloud Computing | en_US |
dc.subject | Smartphone | en_US |
dc.subject | Fuzzy Genetic Algorithm | en_US |
dc.title | Using fog computing to reduce time and energy in information networks | |
dc.type | Master Thesis |
Dosyalar
Lisans paketi
1 - 1 / 1
[ X ]
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: