Integrative machine learning approaches for enhanced cardiovascular disease prediction: a comparative analysis of XGBoost and ANFIS algorithms

dc.contributor.advisorAta, Oğuz
dc.contributor.authorMuhyi, Diyar Fadhil Muhyi
dc.date.accessioned2024-09-11T07:58:03Z
dc.date.available2024-09-11T07:58:03Z
dc.date.issued2024en_US
dc.date.submitted2024
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilişim Teknolojileri Ana Bilim Dalıen_US
dc.description.abstractCardiovascular diseases (CVDs) are the leading cause of death globally, underscoring the need for advanced detection and diagnostic methods to enhance patient outcomes. This study investigates the efficacy of two machine learning algorithms, XGBoost and the Adaptive Neuro-Fuzzy Inference System (ANFIS), in predicting heart disease across diverse datasets. Utilizing datasets from the UCI Machine Learning Repository, including Switzerland, Cleveland, Hungarian, Long Beach VA, and Statlog Heart, standard preprocessing techniques such as imputation, standardization, one-hot encoding, and SMOTEENN were applied to ensure consistent modeling conditions. Both models underwent extensive training and optimization. XGBoost excelled, particularly achieving 100% accuracy in the Switzerland and Statlog datasets, while ANFIS demonstrated its strength in modeling complex patterns, notably achieving perfect accuracy in the Cleveland dataset. Performance evaluations using accuracy, precision, recall, F1 score, F2 score, and ROC-AUC score highlighted XGBoost's consistent high precision and recall, vital for reliable CVD diagnosis. In contrast, ANFIS showed potential in clinical settings with its high F2 scores, emphasizing the reduction of false negatives. The study highlights the advantages of using advanced machine learning models like XGBoost and ANFIS in cardiovascular diagnostics, suggesting further research with larger and more varied datasets to refine these models and advance medical diagnostics using machine learning.en_US
dc.identifier.citationMuhyi, D. F. M. (2024). Integrative machine learning approaches for enhanced cardiovascular disease prediction: a comparative analysis of XGBoost and ANFIS algorithms. (Yayınlanmamış yüksek lisans tezi). Altınbaş Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12939/4905
dc.identifier.yoktezid877216
dc.institutionauthorMuhyi, Diyar Fadhil Muhyi
dc.language.isoen
dc.publisherAltınbaş Üniversitesi / Lisansüstü Eğitim Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCardiovascular Diseasesen_US
dc.subjectMachine Learningen_US
dc.subjectXGBoosten_US
dc.subjectANFISen_US
dc.subjectDiagnostic Predictive Modelingen_US
dc.titleIntegrative machine learning approaches for enhanced cardiovascular disease prediction: a comparative analysis of XGBoost and ANFIS algorithms
dc.typeMaster Thesis

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin / Full Text
Boyut:
2.38 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama:

Koleksiyon