NoSQL veri tabanları üzerinde bir metin madenciliği uygulaması
Yükleniyor...
Dosyalar
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Altınbaş Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Metin madenciliği metni veri kaynağı olarak dikkate alan veri madenciliği çalışmasıdır. Metin madenciliği düzensiz metinlerden oluştuğundan veri madenciliği algoritmaları ile yaklaşmak mümkündür. Asıl fark düzensiz metinleri anlamlı bir düzene oturtmaktır. Bu sebeple belirli bir düzene yaklaştırılan metinler üzerinde veri madenciliği yapmak kolaylaşmaktadır. Zor olan ise kaynaklar toplayıp derlemek ve anlamlı sayısal ifadelere çevirebilmektir. Projedeki amaç müşteri şikâyetlerini anlamlandırıp ölçümlemektir. Projede GSM firmaları dikkate alınmıştır. Sonraki süreçte ise hedef öğrenci yazılılarını okumaktır. Öğrencilere sınavlarına uygulanacak metin madenciliği çalışması ise farklı bir uzmanlık gerektirmektedir. Sözlük yaklaşımında olduğu gibi her soru için kategori ve kategori altındaki ağırlıklı kelimeler bu uzmanlar tarafından belirlenmelidir. Doğru sözlük tablosu oluşturulduğunda yazılım hızla değerlendirmesini yapacaktır. Milyonlarca öğrencinin cevap kâğıdının okunduğunu düşünürsek yazılımın milyonlarca işlem karşısında yorgunluk ve dikkatsizlik gibi davranışlarda bulunması beklenemez. Sonuç olarak milyonlarca iş yükünün altında bile metin madenciliği yaklaşım projesinin eşit, adil ve hızlı bir değerlendirme yapacağı aşikârdır.
Text mining is a data mining operation that considers text as a data source. Since text mining is composed of irregular texts, it is possible to approach it with data mining algorithms. The main difference is to place irregular text on a meaningful level. For this reason, it is easy to make data mining on a certain level of approximated text. The hard one is to collect resources and translate meaningful digital expressions. The purpose of the project is to understand and measure customer complaints. GSM companies are considered in the project. The next step is to read the target student’s writings. The study of text mining that will be applied to the students’ exams requires different expertise. As with the dictionary approach, the weighted words under the category and category for each question must be determined by these experts. When the correct dictionary table is created, the software will make a quick evaluation. If we think that millions of learners read the answer paper, it can not be expected that the software will be found in behaviors like fatigue and carelessness in the face of millions of transactions. As a result, even under millions of workloads, the text mining approach project is likely to make an equitable, fair and rapid assessment
Text mining is a data mining operation that considers text as a data source. Since text mining is composed of irregular texts, it is possible to approach it with data mining algorithms. The main difference is to place irregular text on a meaningful level. For this reason, it is easy to make data mining on a certain level of approximated text. The hard one is to collect resources and translate meaningful digital expressions. The purpose of the project is to understand and measure customer complaints. GSM companies are considered in the project. The next step is to read the target student’s writings. The study of text mining that will be applied to the students’ exams requires different expertise. As with the dictionary approach, the weighted words under the category and category for each question must be determined by these experts. When the correct dictionary table is created, the software will make a quick evaluation. If we think that millions of learners read the answer paper, it can not be expected that the software will be found in behaviors like fatigue and carelessness in the face of millions of transactions. As a result, even under millions of workloads, the text mining approach project is likely to make an equitable, fair and rapid assessment
Açıklama
Anahtar Kelimeler
Metin Madenciliği, Joker Yöntemi, Sözlük Yöntemi, Gövdeleme, MongoDB, NoSQL, Text Mining, Joker Method, Dictionary Method, Mocking
Kaynak
AURUM Mühendislik Sistemleri ve Mimarlık Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
1
Sayı
1
Künye
Zontul, M., & Aydın, G. NoSQL VERİ TABANLARI ÜZERİNDE BİR METİN MADENCİLİğİ UYGULAMASI. AURUM-Mühendislik Sistemleri ve Mimarlık Dergisi, 1(1), 103-113.