Indoor location estimation by using maximum likelihood estimation based algorithm on small cell networks

[ X ]

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Altınbaş Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Özet için ingilizce bölüme başvurunuz. Çevisi daha sonra eklenecektir.
This thesis presents a new framework for indoor localization using Third Generation(3G) Universal Mobile Telephone System (UMTS) Femtocell. The fingerprinting technique is applied to collect the Received Signal Strength Indication(RSSI) values through an Android User Equipment(UE) and data is processed in real time using MQTT server. To achieve better Radio Frequency (RF) planning and optimization for the placement of Femto Access Point(FAP), statistical analysis is performed by normalizing and calculating the Mean Squared Error(MSE) of the acquired data. To maximize the success rate in finding the location of the person, Maximum likelihood Estimation(MLE) based algorithm is used for tracking. Simulation was carried out both for 1 million samples and real life test using 100 samples. To make it more accurate and efficient, MLE based algorithm is developed and simulated in MATLAB. Both simulation approaches resulted in good success rates. A case study is also part of this thesis, case study discuss about the real life project and deployment setup for indoor positioning estimation and localization techniques using multiple FAP's.

Açıklama

Yüksek Lisans

Anahtar Kelimeler

Indoor Localization, Indoor Pozitioning, Location Estimation, Femtocells, Maximum Likelihood Estimation, MQTT, Normalization, Mean Squared Error, FingerPrinting, Small Cells

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Ilyas, Muhammad. (2014). Indoor location estimation by using maximum likelihood estimation based algorithm on small cell networks. (Yayınlanmamış yüksek lisans tezi). Altınbaş Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

Koleksiyon