Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ibraheem, Ibraheem Kasim" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Detection Lung Nodules Using Medical CT Images Based on Deep Learning Techniques
    (2025) Mohammed, Ali Abdulwahhab; Abdulwahhab, Ali H.; Ibraheem, Ibraheem Kasim
    Lung nodule cancer detection is a critical and complex medical challenge. Accuracy in detecting lung nodules can significantly improve patient prognosis and care. The main challenge is to develop a detection method that can accurately distinguish between benign and malignant nodules and perform effectively under various imaging conditions. The development of technology and investment in deep learning techniques in the medical field make it easy to use Positron Emission Tomography (PET) and Computed Tomography (CT). Thus, this paper presents lung cancer detection by filtering the PET-CT image, obtaining the lung region of interest (ROI), and training using Convolution neural network (CNN)-Deep learning models for defending the nodules' location. The limitation dataset composed of 220 cases with 560 nodules with fixed Hounsfield Units (HU) is used to increase the training's speed and save data. The trained models involve CNN, DCNN, 3DCNN, VGG 19, ResNet 18, Inception V1, and Inception-ResNet to detect the lung nodules. The experiment shows high-speed training with VGG 19 outperforming the rest of deep learning, it achieves accuracy, Precision, Specificity, Sensitivity, F1-Score, IoU, FP rate with standard division; 98.65 f 0.22, 98.80 f 0.15, 98.70 f 0.20, 98.55 f 0.18, 98.60 f 0.16, 0.94 f 0.03, 1.05 f 0.22, respectively. Moreover, the experiment results show an overall error rate and a standard division between f 0.04 to f 0.54 distributed over the calculation terms.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim