Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mohammed, Ali Abdulwahhab" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    A review on medical image applications based on deep learning techniques
    (University of Portsmouth, 2024) Abdulwahhab, Ali H.; Mahmood, Noof T.; Mohammed, Ali Abdulwahhab; Myderrizi, Indrit; Al-Jumaili, Mustafa Hamid
    The integration of deep learning in medical image analysis is a transformative leap in healthcare, impacting diagnosis and treatment significantly. This scholarly review explores deep learning’s applications, revealing limitations in traditional methods while showcasing its potential. It delves into tasks like segmentation, classification, and enhancement, highlighting the pivotal roles of Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs). Specific applications, like brain tumor segmentation and COVID-19 diagnosis, are deeply analyzed using datasets like NIH Clinical Center’s Chest X-ray dataset and BraTS dataset, proving invaluable for model training. Emphasizing high-quality datasets, especially in chest X-rays and cancer imaging, the article underscores their relevance in diverse medical imaging applications. Additionally, it stresses the managerial implications in healthcare organizations, emphasizing data quality and collaborative partnerships between medical practitioners and data scientists. This review article illuminates deep learning’s expansive potential in medical image analysis, a catalyst for advancing healthcare diagnostics and treatments.
  • [ X ]
    Öğe
    Detection of epileptic seizure using EEG signals analysis based on deep learning techniques
    (Elsevier, 2024) Abdulwahhab, Ali H.; Abdulaal, Alaa Hussein; Thary Al-Ghrairi, Assad H.; Mohammed, Ali Abdulwahhab; Valizadeh, Morteza
    The brain neurons' electrical activities represented by Electroencephalogram (EEG) signals are the most common data for diagnosing Epilepsy seizure, which is considered a chronic nervous disorder that cannot be controlled medically using surgical operation or medications with more than 40 % of Epilepsy seizure case. With the progress and development of artificial intelligence and deep learning techniques, it becomes possible to detect these seizures over the observation of the non-stationary-dynamic EEG signals, which contain important information about the mental state of patients. This paper provides a concerted deep machine learning model consisting of two simultaneous techniques detecting the activity of epileptic seizures using EEG signals. The time-frequency image of EEG waves and EEG raw waves are used as input components for the convolution neural network (CNN) and recurrent neural network (RNN) with long- and short-term memory (LSTM). Two processing signal methods have been used, Short-Time Fourier Transform (STFT) and Continuous Wavelet Transformation (CWT), have been used for generating spectrogram and scalogram images with sizes of 77 × 75 and 32 × 32, respectively. The experimental results showed a detection accuracy of 99.57 %, 99.57 % using CWT Scalograms, and 99.26 %, 97.12 % using STFT spectrograms as CNN input for the Bonn University dataset and the CHB-MIT dataset, respectively. Thus, the proposed models provide the ability to detect epileptic seizures with high success compared to previous studies.

| Altınbaş Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Altınbaş Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim