Yazar "Shah, Arpit" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A hybrid ensemble learning approach for efficient diabetic retinopathy prediction and classification using machine learning and deep learning techniques(Ismail Saritas, 2024) Shah, Arpit; Patel, Warish; Koyuncu, HakanAI is a crucial tool in early detection and classification of diabetic retinopathy, which is a leading cause of visual impairment globally. Transfer Learning (TL) was used to improve the accuracy of predictions and classifications within training datasets, surpassing existing methodologies. The study provides comprehensive insights into current databases, screening programs, performance evaluation metrics, relevant biomarkers, and challenges encountered in ophthalmology. The findings underscore the potential of AI-based approaches in enhancing diagnostic precision and offer a promising direction for future studies. The paper concludes by delineating opportunities for further research and development in integrating AI advancements in the field. Conclusion: The findings underscore the efficacy of Transfer Learning in significantly improving the accuracy of diabetic retinopathy image predictions. This research highlights the potential of AI-based approaches in enhancing diagnostic precision and offers a promising direction for future studies. The paper concludes by delineating opportunities for further research and development, emphasizing the continued integration of advanced AI methodologies in ophthalmology to advance diabetic retinopathy detection and management.Öğe Empowering healthcare innovation: IoT-enabled smart systems and deep learning for enhanced diabetic retinopathy in the telehealth landscape(Taru Publications, 2024) Shah, Arpit; Patel, Warish; Koyuncu, HakanBackground: Among prevalent medical complications, Diabetic Eye Disease (DED) stands as a significant contributor to vision loss. To forecast its progression and accurately assess the various stages, diverse methodologies have emerged. Machine Learning (ML) and Deep Learning (DL) algorithms have become essential tools in this endeavor, primarily through their adept analysis of Diabetic Retinopathy (DR) images. However, there is still a need for a more efficient and accurate method to predict DR performance. Method: We have developed an innovative method for classifying and predicting diabetic retinopathy. The novel idea in this research is to combine several techniques, including ensemble learning and a 2D convolutional neural network; we utilized transfer learning and a correlation method in our approach. Initially, the Stochastic Gradient Boosting process was employed for predicting diabetic retinopathy. We then used a boosting-based Ensemble Learning method for predicting images of diabetic retinopathy. Next, we applied a 2D Convolutional Neural Network. We successfully employed Transfer Learning to classify different stages of diabetic retinopathy images accurately. This research explores the role of artificial intelligence in identifying and categorizing diabetic retinopathy at an early stage, using techniques such as machine learning and deep learning. It also use techniques like transfer learning, domain adaptation, multitask learning, and explainable AI to accurately classify different stages of diabetic retinopathy images. Our proposed technique achieves impressive results through experiments, with a 97.9% accuracy in forecasting DR images and a 98.1% accuracy in image grading. Additionally, sensitivity and specificity metrics measure 99.3% and 97.6%, respectively. Comparative analysis with existing methods underscores the high predictive accuracy achieved by our proposed approach.