Enhancing smart grid efficiency: a modified ANN-LSTM approach for energy storage and distribution optimization
dc.contributor.author | Mohammed, Ramzi Qasim | |
dc.contributor.author | Abdulrazzaq, Mohammed Majid | |
dc.contributor.author | Mohammed, Ayoob Jasim | |
dc.contributor.author | Mardikyan, Kevork | |
dc.contributor.author | Çevik, Mesut | |
dc.date.accessioned | 2023-12-21T09:09:28Z | |
dc.date.available | 2023-12-21T09:09:28Z | |
dc.date.issued | 2023 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | The smart grid represents a paradigm shift in energy management, aiming to optimize energy storage and distribution while accommodating the growing demand for renewable energy sources. In this paper, we investigate the application of a modified Artificial Neural Network with Long Short-Term Memory (ANN-LSTM) in addressing the multifaceted challenges of the smart grid. Through rigorous experimentation and simulation, the ANN-LSTM is evaluated in four diverse scenarios, including normal operation, fluctuating renewable energy, peak demand, and grid instability. The results showcase the model's exceptional predictive accuracy, low Mean Squared Error (MSE), and rapid response times, outperforming other models, such as Support Vector Machine (SVM), Convolutional Neural Network (CNN), Decision Tree (DT), and Fuzzy Logic. Our findings underscore the ANN-LSTM's potential to revolutionize energy storage and distribution in the smart grid, ushering in a new era of efficiency, sustainability, and resilience in energy management. | en_US |
dc.identifier.citation | Mohammed, R. Q., Abdulrazzaq, M. M., Mohammed, A. J., Mardikyan, K., & Çevık, M. (2023, October). Enhancing smart grid efficiency: a modified ANN-LSTM approach for energy storage and distribution optimization. In 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-5). IEEE. | en_US |
dc.identifier.isbn | 9798350342154 | |
dc.identifier.scopus | 2-s2.0-85179139343 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://hdl.handle.net/20.500.12939/4400 | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Mardikyan, Kevork | |
dc.institutionauthor | Çevik, Mesut | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 7th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2023 - Proceedings | |
dc.relation.isversionof | 10.1109/ISMSIT58785.2023.10304846 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Long Short-Term Memory (LSTM) | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Predictive Modeling | en_US |
dc.title | Enhancing smart grid efficiency: a modified ANN-LSTM approach for energy storage and distribution optimization | |
dc.type | Conference Object |
Dosyalar
Lisans paketi
1 - 1 / 1
[ X ]
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: