Voltage stability control in hybrid systems using AI

dc.contributor.authorAl-Gbur, Fadhaa Zaid Khalaf
dc.contributor.authorAl Yosif, Rasha Khalied Lrehaem
dc.contributor.authorHamodat, Zaid
dc.date.accessioned2022-08-08T13:02:55Z
dc.date.available2022-08-08T13:02:55Z
dc.date.issued2022en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractThis paper presents an optimization-based strategy for increasing the voltage stability of power systems while needing fewer measurements. By using a Ward reduction-based network that collects data only from critical locations, it is possible to increase the system's overall loadability, hence improving overall performance. A hybrid state estimator is used to more accurately estimate the system states of the reduced network by taking into account recent changes in the surrounding environment. Utilizing a predictive-corrector primal-dual interior point approach, it is important to improve the loadability margin over a specific critical margin. Gauss-Newton optimization is used to compare the optimized voltages to the objective values in order to establish the control settings. When combined with the aforementioned methodologies, the IEEE 30-bus and IEEE 118-bus test systems have shown success.en_US
dc.identifier.citationAl-Gbur, F. Z. K., Al Yosif, R. K. L., Hamodat, Z. (2022). Voltage stability control in hybrid systems using AI. In 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), IEEE.en_US
dc.identifier.isbn9781665468350
dc.identifier.scopus2-s2.0-85133961294
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12939/2800
dc.indekslendigikaynakScopus
dc.institutionauthorAl-Gbur, Fadhaa Zaid Khalaf
dc.institutionauthorAl Yosif, Rasha Khalied Lrehaem
dc.institutionauthorHamodat, Zaid
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofHORA 2022 - 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings
dc.relation.isversionof10.1109/HORA55278.2022.9799982en_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAIen_US
dc.subjectDESen_US
dc.subjectEMSen_US
dc.subjectPVen_US
dc.titleVoltage stability control in hybrid systems using AI
dc.typeConference Object

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: