MEMF-Net: A Mega-Ensemble of Multi-Feature CNNs for Classification of Breast Histopathological Images

dc.contributor.authorAbdulaal, Alaa Hussein
dc.contributor.authorAbdulwahhab, Ali H.
dc.contributor.authorBreesam, Aqeel Majeed
dc.contributor.authorOleiwi, Zahra Hasan
dc.contributor.authorYassin, Riyam Ali
dc.contributor.authorValizadeh, Morteza
dc.contributor.authorMohsin, Saja Nafea
dc.date.accessioned2025-10-13T13:36:55Z
dc.date.available2025-10-13T13:36:55Z
dc.date.issued2025
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
dc.description.abstractPathological anatomical images play a pivotal role in diagnosing diseases, notably breast cancer, which affects women globally. These images, obtained through biopsies or post-mortem examinations, are preserved to maintain their structural integrity. Software tools, like computer-aided diagnosis, aid doctors in early detection and treatment planning, contributing to reduced mortality rates. In this context, convolutional neural networks (CNNs) have emerged as valuable tools for diagnosing benign and malignant breast cancers. This paper introduces a Mega Ensemble Net method, leveraging multi-scale combination features on the breast histopathology dataset. Three fine-tuned deep learning models, namely ResNet-18, ResNet-34, and ResNet-50, are integrated into this method. Techniques such as patch extraction for data augmentation, dataset amalgamation, and transfer learning bolster the method’s capabilities. Fusing extracted patches with primary images enhances the method’s robustness and adaptability, offering diverse perspectives and intricate details for nuanced class distinctions. BACH and BreaKHis datasets have been used to evaluate the Mega Net. During four-fold cross-validation on the test folds, the Mega-Net demonstrates 99% test-set accuracy in the full image and 98% test-set accuracy in patches within the multi-classification BACH dataset and 99% test-set accuracy within the binary classification BreaKHis dataset. Moreover, the MEMF-Net achieved a multi-classification test accuracy of 98.95% across an optimal selected MEMF model in validation testing images.
dc.identifier.citationAbdulaal, A. H., Abdulwahhab, A. H., Breesam, A. M., Oleiwi, Z. H., Yassin, R. A., Valizadeh, M., & Mohsin, S. N. (2025). MEMF-Net: A Mega-Ensemble of Multi-Feature CNNs for Classification of Breast Histopathological Images. Iraqi Journal for Computer Science and Mathematics, 6(3), 560-577. 10.52866/2788-7421.1309
dc.identifier.doi10.52866/2788-7421.1309
dc.identifier.endpage577
dc.identifier.issn2788-7421
dc.identifier.issue3
dc.identifier.scopus2-s2.0-105015441961
dc.identifier.scopusqualityQ1
dc.identifier.startpage560
dc.identifier.urihttps://hdl.handle.net/20.500.12939/5955
dc.identifier.volume6
dc.indekslendigikaynakScopus
dc.institutionauthorAbdulwahhab, Ali H.
dc.language.isoen
dc.publisherCollege of Education, Al-Iraqia University
dc.relation.ispartofIraqi Journal for Computer Science and Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Öğrenci
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectClassification
dc.subjectConvolutional Neural Networks (CNNs)
dc.subjectDeep learning
dc.subjectEnsemble model
dc.subjectHistopathological image
dc.titleMEMF-Net: A Mega-Ensemble of Multi-Feature CNNs for Classification of Breast Histopathological Images
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin / Full Text
Boyut:
24.82 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: