Face recognition system using local binary pattern with binary dragonfly algorithm to feature selection

dc.contributor.authorAl-Aloosi, Ahmed Raad
dc.contributor.authorFarhan, Hameed Mutlag
dc.contributor.authorNaseri, Raghda Awad Shaban
dc.contributor.authorTürkben, Ayça Kurnaz
dc.contributor.authorMustafa, Ahmed Khalid
dc.contributor.authorAl-Obadi, Mohammed G.F.
dc.date.accessioned2023-06-10T09:42:43Z
dc.date.available2023-06-10T09:42:43Z
dc.date.issued2022en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilişim Teknolojileri Ana Bilim Dalıen_US
dc.description.abstractIn this paper, the local binary pattern is used to feature extraction, and the Binary Dragonfly Algorithm (BDA) is exploited to find the optimum features. This is a new methodology for face recognition systems. A proposed face acknowledgment framework was created to be utilized for various purposes. We utilized a local binary pattern for extraction of the important feature of the face that prepares the information and afterward, we utilized BDA to find the best features from feature data. We will execute and assess the proposed strategy on ORL and other datasets with MATLAB 2021a.en_US
dc.identifier.citationAl-Aloosi, A. R., Farhan, H. M., Naseri, R. A. S., Turkben, A. K., Mustafa, A. K., & Al-Obadi, M. G. (2022). Face Recognition System Using Local Binary Pattern with Binary Dragonfly Algorithm to Feature Selection. In 2022 International Conference on Artificial Intelligence of Things (ICAIoT). IEEE.en_US
dc.identifier.isbn9798350396768
dc.identifier.scopus2-s2.0-85160544165
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12939/3542
dc.indekslendigikaynakScopus
dc.institutionauthorAl-Aloosi, Ahmed Raad
dc.institutionauthorFarhan, Hameed Mutlag
dc.institutionauthorNaseri, Raghda Awad Shaban
dc.institutionauthorTürkben, Ayça Kurnaz
dc.institutionauthorMustafa, Ahmed Khalid
dc.institutionauthorAl-Obadi, Mohammed G.F.
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2022 International Conference on Artificial Intelligence of Things, ICAIoT 2022
dc.relation.isversionof10.1109/ICAIoT57170.2022.10121837en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectFace Detectionen_US
dc.subjectPrincipal Component Analysisen_US
dc.titleFace recognition system using local binary pattern with binary dragonfly algorithm to feature selection
dc.typeConference Object

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: