Intursion detection in Iot networks using feature selection and SVM classificastion

dc.contributor.authorHussein Al-Balhawi, Maryam Ali
dc.contributor.authorCansever, Galip
dc.date.accessioned2022-08-08T13:24:52Z
dc.date.available2022-08-08T13:24:52Z
dc.date.issued2022en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilişim Teknolojileri Ana Bilim Dalıen_US
dc.description.abstractThe steady growth in the number of devices connected to the Internet has attracted cyber criminals looking for vulnerabilities in computer networks and systems. The objective of this paper is to develop a model to identify DDoS, Infiltration, Web and Brute force attacks on computer networks, using Machine Learning (ML) techniques, increasing the accuracy, sensitivity, precision and measurement values. -F in relation to existing work.en_US
dc.identifier.citationAl-Balhawi, M. A. H., Cansever, G. (2022). Intursion detection in Iot networks using feature selection and SVM classificastion. In 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), IEEE.en_US
dc.identifier.isbn9781665468350
dc.identifier.scopus2-s2.0-85133958959
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12939/2815
dc.indekslendigikaynakScopus
dc.institutionauthorHussein Al-Balhawi, Maryam Ali
dc.institutionauthorCansever, Galip
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofHORA 2022 - 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings
dc.relation.isversionof10.1109/HORA55278.2022.9799861en_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDDoSen_US
dc.subjectIOTen_US
dc.subjectMalwareen_US
dc.subjectMLen_US
dc.titleIntursion detection in Iot networks using feature selection and SVM classificastion
dc.typeConference Object

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: