Detection Lung Nodules Using Medical CT Images Based on Deep Learning Techniques

dc.contributor.authorMohammed, Ali Abdulwahhab
dc.contributor.authorAbdulwahhab, Ali H.
dc.contributor.authorIbraheem, Ibraheem Kasim
dc.date.accessioned2025-08-14T17:37:45Z
dc.date.available2025-08-14T17:37:45Z
dc.date.issued2025
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
dc.description.abstractLung nodule cancer detection is a critical and complex medical challenge. Accuracy in detecting lung nodules can significantly improve patient prognosis and care. The main challenge is to develop a detection method that can accurately distinguish between benign and malignant nodules and perform effectively under various imaging conditions. The development of technology and investment in deep learning techniques in the medical field make it easy to use Positron Emission Tomography (PET) and Computed Tomography (CT). Thus, this paper presents lung cancer detection by filtering the PET-CT image, obtaining the lung region of interest (ROI), and training using Convolution neural network (CNN)-Deep learning models for defending the nodules' location. The limitation dataset composed of 220 cases with 560 nodules with fixed Hounsfield Units (HU) is used to increase the training's speed and save data. The trained models involve CNN, DCNN, 3DCNN, VGG 19, ResNet 18, Inception V1, and Inception-ResNet to detect the lung nodules. The experiment shows high-speed training with VGG 19 outperforming the rest of deep learning, it achieves accuracy, Precision, Specificity, Sensitivity, F1-Score, IoU, FP rate with standard division; 98.65 f 0.22, 98.80 f 0.15, 98.70 f 0.20, 98.55 f 0.18, 98.60 f 0.16, 0.94 f 0.03, 1.05 f 0.22, respectively. Moreover, the experiment results show an overall error rate and a standard division between f 0.04 to f 0.54 distributed over the calculation terms.
dc.identifier.citationMohammed, A. A., Abdulwahhab, A. H., & Ibraheem, I. K. (2025). Detection Lung Nodules Using Medical CT Images Based on Deep learning techniques. Baghdad Science Journal, 22(5), 1596-1608.
dc.identifier.doi10.21123/bsj.2024.11416
dc.identifier.issn2078-8665
dc.identifier.issn2411-7986
dc.identifier.issue5
dc.identifier.urihttps://hdl.handle.net/20.500.12939/5900
dc.identifier.volume22
dc.identifier.wosWOS:001500540700006
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.institutionauthorAbdulwahhab, Ali H.
dc.language.isoen
dc.relation.ispartofBaghdad Science Journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Öğrenci
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectConvolution neural network (CNN)
dc.subjectDeep learning
dc.subjectCT image
dc.subjectLung cancer
dc.subjectlung nodules
dc.titleDetection Lung Nodules Using Medical CT Images Based on Deep Learning Techniques
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin / Full Text
Boyut:
9.11 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: