A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets
dc.contributor.author | Ibrahim, Hadeel Tariq | |
dc.contributor.author | Mazher, Wamidh Jalil | |
dc.contributor.author | Uçan, Osman Nuri | |
dc.contributor.author | Bayat, Oğuz | |
dc.date.accessioned | 2021-05-15T11:34:19Z | |
dc.date.available | 2021-05-15T11:34:19Z | |
dc.date.issued | 2019 | |
dc.department | Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | Al-Rayes, Hadeel/0000-0001-9749-4024; mazher, wamidh jalil/0000-0003-2092-3745 | |
dc.description.abstract | Support vector machines (SVM) are one of the important techniques used to solve classifications problems efficiently. Setting support vector machine kernel factors affects the classification performance. Feature selection is a powerful technique to solve dimensionality problems. In this paper, we optimized SVM factors and chose features using a Grasshopper Optimization Algorithm (GOA). GOA is a new heuristic optimization algorithm inspired by grasshoppers searching for food. It approved its ability to solve real-world problems with anonymous search space. We applied the proposed GOA + SVM approach on biomedical data sets for Iraqi cancer patients in 2010-2012 and for University of California Irvine data sets. | en_US |
dc.identifier.doi | 10.1007/s00521-018-3414-4 | |
dc.identifier.endpage | 5974 | en_US |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopus | 2-s2.0-85043386208 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 5965 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-018-3414-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12939/308 | |
dc.identifier.volume | 31 | en_US |
dc.identifier.wos | WOS:000491131700019 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Uçan, Osman Nuri | |
dc.institutionauthor | Bayat, Oğuz | |
dc.institutionauthor | Ibrahim, Hadeel Tariq | |
dc.language.iso | en | |
dc.publisher | Springer London Ltd | en_US |
dc.relation.ispartof | Neural Computing & Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Support Vector Machines | en_US |
dc.subject | Feature Selection | en_US |
dc.subject | Grasshopper Optimizer | en_US |
dc.title | A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets | |
dc.type | Article |