Motor-imagery BCI task classification using riemannian geometry and averaging with mean absolute deviation

dc.contributor.authorMiah, Abu Saleh Musa
dc.contributor.authorAhmed, Saadaldeen Rashid Ahmed
dc.contributor.authorAhmed, Mohammed Rashid
dc.contributor.authorBayat, Oguz
dc.contributor.authorDuru, Adil Deniz
dc.contributor.authorMolla, Md. Khademul Islam
dc.date.accessioned2021-05-15T12:41:21Z
dc.date.available2021-05-15T12:41:21Z
dc.date.issued2019
dc.departmentMühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.descriptionInternational Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science (EBBT) -- APR 24-26, 2019 -- Istanbul Arel Univ, Kemal Gozukara Campus, Istanbul, TURKEY
dc.descriptionDuru, Adil Deniz/0000-0003-3014-9626
dc.description.abstractBrain Computer interface (BCI) is thought as a better way to link within brain and computer alternative machine. Many types of physiological signal will work BCI framework. Motor imagery (MI) has incontestable to be a excellent way to work a BCI system. Recent research concerning MI based mostly BCI framework, lower performance accuracy and intense of time have common issues. Main focuses of this paper is select the appropriate central point of tangent space in Tangent Space Linear Discriminant analysis-based Motor-Imagery Brain-Computer interfacing. Method name tangent space mapping LDA (TSMLDA) analysis takes its moves from the observations that normally, the EEG signal embodies outliers, so the centrality as a geometric mean of tangent space might not be the simplest alternative. We tend to propose the employment of strong estimators of variance matrices average. Specifically, Median Absolute Deviation(MAD) going to be planned and mentioned. Associate in Nursing experimental analysis can show the advance of Tangent house Linear Discriminant Analysis corresponding to the planned strong estimators. Experimental results show that our proposed method performs 3% better than the recently developed algorithms.en_US
dc.description.sponsorshipIEEE Turkey Sect, IEEE EMB, Erasmus+, Europassen_US
dc.identifier.isbn978-1-7281-1013-4
dc.identifier.scopus2-s2.0-85068563611
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12939/791
dc.identifier.wosWOS:000491430200007
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorBayat, Oguz
dc.institutionauthorAhmed, Saadaldeen Rashid Ahmed
dc.institutionauthorAhmed, Mohammed Rashid
dc.language.isoen
dc.publisherIeeeen_US
dc.relation.ispartof2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (Ebbt)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBrain-Computer Interfacing(BCI)en_US
dc.subjectSpatial Covariance Matrices(SCM)en_US
dc.subjectAutomated Classificationen_US
dc.subjectRiemannian Manifolden_US
dc.subjectRiemannian Geometryen_US
dc.subjectCovariance Matrixen_US
dc.subjectSymmetricPositive- Matricesen_US
dc.subjectMatricesen_US
dc.titleMotor-imagery BCI task classification using riemannian geometry and averaging with mean absolute deviation
dc.typeConference Object

Dosyalar