Dynamic time warping based connectivity classification of event-related potentials
dc.contributor.author | Al-rubaye, Kadhum Kareem | |
dc.contributor.author | Bayat, Oğuz | |
dc.contributor.author | Uçan, Osman Nuri | |
dc.contributor.author | Duru, Dilek Goksel | |
dc.contributor.author | Duru, Adil Deniz | |
dc.date.accessioned | 2021-05-15T12:41:18Z | |
dc.date.available | 2021-05-15T12:41:18Z | |
dc.date.issued | 2019 | |
dc.department | Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik ve Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | Medical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEY | |
dc.description | Duru, Adil Deniz/0000-0003-3014-9626 | |
dc.description.abstract | Human brain electrical responses measured as Electroencephalogram epochs have different characteristics by means of amplitude and frequency content depending on the conditions and stimuli. Event-related potentials are the responses given to the stimuli and can be measured using the EEG. The average of these epochs are computed to remove the background activity and helps to exhibit the response to stimuli solely. In the concept of this study, dynamic time warping based connectivity features are used to classify the single-trial ERP epochs. Color Stroop test was implemented and ERP data are collected from 10 subjects. Support vector machine and K-NN classifiers are used and accurate classification results are achieved with the use of DTW metrics. | en_US |
dc.description.sponsorship | Biyomedikal Klinik Muhendisligi Dernegi, Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumu | en_US |
dc.identifier.endpage | 520 | en_US |
dc.identifier.isbn | 978-1-7281-2420-9 | |
dc.identifier.scopus | 2-s2.0-85079344619 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 517 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12939/781 | |
dc.identifier.wos | WOS:000516830900133 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Uçan, Osman Nuri | |
dc.institutionauthor | Bayat, Oğuz | |
dc.institutionauthor | Al-rubaye, Kadhum Kareem | |
dc.language.iso | en | |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2019 Medical Technologies Congress (Tiptekno) | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | DTW | en_US |
dc.subject | SVM | en_US |
dc.subject | KNN | en_US |
dc.subject | ERP | en_US |
dc.title | Dynamic time warping based connectivity classification of event-related potentials | |
dc.type | Conference Object |