Recognizing touch gestures for social human-robot interaction

dc.contributor.authorAltuğlu, Tuğçe Ballı
dc.contributor.authorAltun, Kerem
dc.date.accessioned2021-05-15T12:40:34Z
dc.date.available2021-05-15T12:40:34Z
dc.date.issued2015
dc.departmentMühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliğien_US
dc.description2015 ACM International Conference on Multimodal Interaction -- NOV 09-13, 2015 -- Seattle, WA
dc.descriptionAltun, Kerem/0000-0002-5493-8921
dc.description.abstractIn this study, we performed touch gesture recognition on two sets of data provided by "Recognition of Social Touch Gestures Challenge 2015". For the first dataset, dubbed Corpus of Social Touch (CoST), touch is performed on a mannequin arm, whereas for the second dataset (Human-Animal Affective Robot Touch HAART) touch is performed in a human-pet interaction setting. CoST includes 14 gestures and HAART includes 7 gestures. We used the pressure data, image features, Hurst exponent, Hjorth parameters and autoregressive model coefficients as features, and performed feature selection using sequential forward floating search. We obtained classification results around 60%-70% for the HAART dataset. For the CoST dataset, the results range from 26% to 95% depending on the selection of the training/test sets.en_US
dc.description.sponsorshipACM SIGCHIen_US
dc.identifier.doi10.1145/2818346.2830600
dc.identifier.endpage413en_US
dc.identifier.isbn978-1-4503-3912-4
dc.identifier.scopus2-s2.0-84959258854
dc.identifier.scopusqualityN/A
dc.identifier.startpage407en_US
dc.identifier.urihttps://doi.org/10.1145/2818346.2830600
dc.identifier.urihttps://hdl.handle.net/20.500.12939/617
dc.identifier.wosWOS:000380609500071
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorAltun, Kerem
dc.language.isoen
dc.publisherAssoc Computing Machineryen_US
dc.relation.ispartofIcmi'15: Proceedings of the 2015 Acm International Conference on Multimodal Interaction
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGesture Recognitionen_US
dc.subjectHuman-Robot Interactionen_US
dc.subjectRandom Forestsen_US
dc.subjectFeature Selectionen_US
dc.subjectSequential Floating Forward Searchen_US
dc.titleRecognizing touch gestures for social human-robot interaction
dc.typeConference Object

Dosyalar