Development of a hybrid artificial neural network method for evaluation of the sustainable construction projects

dc.contributor.authorAlbasri, Halah Waleed
dc.contributor.authorNaimi, Sepanta
dc.date.accessioned2024-02-21T09:19:04Z
dc.date.available2024-02-21T09:19:04Z
dc.date.issued2023en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractPlanned methods may be developed to improve the efficiency of building construction. The construction business is profoundly impacted by the prevalence of inaccurate cost and schedule prediction. The main strategy to improve the project performance is to evaluate the hybrid sustainable materials using the artificial neural network (ANN) method based on the effective factors in construction projects in Iraq. This strategy needs an effective method to classify the project input representation and specify the accurate activity of each factor. This paper uses a hybrid artificial neural network to correlate and classify the sustainable hybrid of construction projects to evaluate their performance. The contribution of this method is the selection of the Multi-Criteria Decision-Maker method (MCDM) based on time and cost-effective factors correlated with the artificial neural network method. A dynamic selection procedure for project materials may be created using the existing technique as an evolutionary model for successful project completion. The MCDM observed that the appropriate sustainable material was considered as the main factor with a rank of 0.823 for cost effect and 0.735 for time effect and the main influence factor in Iraqi projects was the building height. The results present superior functional cost evaluation results correlated with the selection of hybrid sustainable materials.en_US
dc.identifier.citationAlbasri, H. W., Naimi, S. (2023). Development of a hybrid artificial neural network method for evaluation of the sustainable construction projects. Acta Logistica, 10(3), 345-352. 10.22306/al.v10i3.378en_US
dc.identifier.endpage352en_US
dc.identifier.issn1339-5629
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85174916730
dc.identifier.scopusqualityQ3
dc.identifier.startpage345en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12939/4607
dc.identifier.volume10en_US
dc.identifier.wosWOS:001108396600010
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorAlbasri, Halah Waleed
dc.institutionauthorNaimi, Sepanta
dc.language.isoen
dc.relation.ispartofActa Logistica
dc.relation.isversionof10.22306/al.v10i3.378en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConstruction managementen_US
dc.subjectSustainabilityen_US
dc.subjectMaterialsen_US
dc.subjectArtificial neural networken_US
dc.subjectConstruction projectsen_US
dc.titleDevelopment of a hybrid artificial neural network method for evaluation of the sustainable construction projects
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
III_2023_01_Albasri_Naimi.pdf
Boyut:
204.38 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: