A hybrid CNN-LSTM approach for precision deepfake image detection based on transfer learning

dc.contributor.authorAl-Dulaimi, Omar Alfarouk Hadi Hasan
dc.contributor.authorKurnaz, Sefer
dc.date.accessioned2024-05-27T13:03:52Z
dc.date.available2024-05-27T13:03:52Z
dc.date.issued2024en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractThe detection of deepfake images and videos is a critical concern in social communication due to the widespread utilization of deepfake techniques. The prevalence of these methods poses risks to trust and authenticity across various domains, emphasizing the importance of identifying fake faces for security and preventing socio-political issues. In the digital media era, deep learning outperforms traditional image processing methods in deepfake detection, underscoring its significance. This research introduces an innovative approach for detecting deepfake images by employing transfer learning in a hybrid architecture that combines convolutional neural networks (CNNs) and long short-term memory (LSTM). The hybrid CNN-LSTM model exhibits promise in combating deep fakes by merging the spatial awareness of CNNs with the temporal context understanding of LSTMs. Demonstrating effective performance on open-source datasets like “DFDC” and “Ciplab”, the proposed method achieves an impressive precision of 98.21%, indicating its capability to accurately identify deepfake images with a limited false-positive rate. The model’s error rate is 0.26%, emphasizing the challenges and intricacies inherent in deepfake detection tasks. These findings underscore the potential of hybrid deep learning techniques for addressing the urgent issue of deepfake image detection.en_US
dc.identifier.citationAl-Dulaimi, O. A. H. H., Kurnaz, S. (2024). A hybrid CNN-LSTM approach for precision deepfake image detection based on transfer learning. Electronics (Switzerland), 13(9). 10.3390/electronics13091662en_US
dc.identifier.issn2079-9292
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85192714764
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://hdl.handle.net/20.500.12939/4705
dc.identifier.volume13en_US
dc.identifier.wosWOS:001219867500001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorAl-Dulaimi, Omar Alfarouk Hadi Hasan
dc.institutionauthorKurnaz, Sefer
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofElectronics (Switzerland)
dc.relation.isversionof10.3390/electronics13091662en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCNNen_US
dc.subjectDeepfakeen_US
dc.subjectLSTMen_US
dc.subjectResNeten_US
dc.subjectTransfer learningen_US
dc.titleA hybrid CNN-LSTM approach for precision deepfake image detection based on transfer learning
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
electronics-13-01662.pdf
Boyut:
6.74 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: