Applying datamining techniques to predict hearing aid type for audiology patients

dc.contributor.authorAljabery, Maalim A.
dc.contributor.authorKurnaz, Sefer
dc.date.accessioned2021-05-15T11:33:47Z
dc.date.available2021-05-15T11:33:47Z
dc.date.issued2020
dc.departmentMühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractOur research is primarily based on dealing with different types of data using Data Mining (DM) techniques. In this research, we devoted ourselves to determining the type of Hearing Aid (HA) needed by patients with hearing impairment. HA type Diagnosis is a medical application that is a major challenge for researchers. Using DM techniques and Machine Learning (ML) has created a major challenge in the process of predicting the appropriate HA type for Audiology Patients (APs). Thus, this problem is primarily in the domain of classification problems. Our study makes a summary of some technical articles on determining the specific type of HA and introduces a study of using DM techniques to improve the accuracy predict for this purpose. Furthermore, our research includes the creation of a new Audiology Dataset based on the addition of some important fields on the old audiology database and analyses a new data of APs. These data have been obtained from the field work for nearly eight consecutive years, then extract a new classification based on this analysis. Relied on our search to reach the highest degree of accuracy in predicting the type of appropriate HA for APs who use it to enhance their hearing, we applied, compared, and analyzed the Neural Network (NN) and Support Vector Machine (SVM), applying Anaconda Navigator version 1.7.0, Orange Canvas version 3.13.0, and Spyder version 3.2.6 applications for Python coding.en_US
dc.identifier.doi10.6688/JISE.202003_36(2).0002
dc.identifier.endpage215en_US
dc.identifier.issn1016-2364
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85082813914
dc.identifier.scopusqualityQ2
dc.identifier.startpage205en_US
dc.identifier.urihttps://doi.org/10.6688/JISE.202003_36(2).0002
dc.identifier.urihttps://hdl.handle.net/20.500.12939/229
dc.identifier.volume36en_US
dc.identifier.wosWOS:000523607200002
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKurnaz, Sefer
dc.language.isoen
dc.publisherInst Information Scienceen_US
dc.relation.ispartofJournal of Information Science and Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Miningen_US
dc.subjectHearing Aiden_US
dc.subjectAudiology Patienten_US
dc.subjectNeural Networken_US
dc.subjectSupport Vector Machinesen_US
dc.titleApplying datamining techniques to predict hearing aid type for audiology patients
dc.typeArticle

Dosyalar