A bidirectional LSTM-RNN and GRU method to exon prediction using splice-site mapping
dc.contributor.author | Canatalay, Peren Jerfi | |
dc.contributor.author | Uçan, Osman Nuri | |
dc.date.accessioned | 2022-06-01T11:18:10Z | |
dc.date.available | 2022-06-01T11:18:10Z | |
dc.date.issued | 2022 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.abstract | Deep Learning techniques (DL) significantly improved the accuracy of predictions and classifications of deoxyribonucleic acid (DNA). On the other hand, identifying and predicting splice sites in eukaryotes is difficult due to many erroneous discoveries. To address this issue, we propose a deep learning model for recognizing and anticipating splice sites in eukaryotic DNA sequences based on a bidirectional Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) and Gated recurrent unit (GRU). The non-coding introns of the gene are spliced out, and the coding exons are joined during the splicing of the original mRNA transcript. This bidirectional LSTM-RNN-GRU model incorporates intron features in order of their length constraints, beginning with splice site donor (GT) and ending with splice site acceptor (AG). The performance of the model improves as the number of training epochs grows. The best level of accuracy for this model is 96.1 percent. | en_US |
dc.identifier.citation | Canatalay, P. J., & Ucan, O. N. (2022). A bidirectional LSTM-RNN and GRU method to exon prediction using splice-site mapping. Applied Sciences, 12(9). | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopus | 2-s2.0-85129787157 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12939/2461 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000795386600001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Uçan, Osman Nuri | |
dc.language.iso | en | |
dc.relation.ispartof | Applied Sciences (Switzerland) | |
dc.relation.isversionof | 10.3390/app12094390 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Exon | en_US |
dc.subject | Intron | en_US |
dc.subject | LSTM | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Splice Site | en_US |
dc.title | A bidirectional LSTM-RNN and GRU method to exon prediction using splice-site mapping | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- A-Bidirectional-LSTMRNN-and-GRU-Method-to-Exon-Prediction-Using-SpliceSite-MappingApplied-Sciences-Switzerland.pdf
- Boyut:
- 1.45 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
[ X ]
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: