An improved image steganography security and capacity using ant colony algorithm optimization

dc.contributor.authorJasim, Zinah Khalid Jasim
dc.contributor.authorKurnaz, Sefer
dc.date.accessioned2024-10-01T07:35:34Z
dc.date.available2024-10-01T07:35:34Z
dc.date.issued2024en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractThis advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization (ACO) algorithm. Image steganography, a technique of embedding hidden information in digital photographs, should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect. The contemporary methods of steganography are at best a compromise between these two. In this paper, we present our approach, entitled Ant Colony Optimization (ACO)-Least Significant Bit (LSB), which attempts to optimize the capacity in steganographic embedding. The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte, both for integrity verification and the file checksum of the secret data. This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images. The ACO algorithm uses adaptive exploration to select some pixels, maximizing the capacity of data embedding while minimizing the degradation of visual quality. Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement. The levels of pheromone are modified to reinforce successful pixel choices. Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30% in the embedding capacity compared with traditional approaches; the average Peak Signal to Noise Ratio (PSNR) is 40.5 dB with a Structural Index Similarity (SSIM) of 0.98. The approach also demonstrates very high resistance to detection, cutting down the rate by 20%. Implemented in MATLAB R2023a, the model was tested against one thousand publicly available grayscale images, thus providing robust evidence of its effectiveness.en_US
dc.identifier.citationJasim, Z. K. J., Kurnaz, S. (2024). An improved image steganography security and capacity using ant colony algorithm optimization. Computers, Materials and Continua, 80(3), 4643-4662. 10.32604/cmc.2024.055195en_US
dc.identifier.endpage4662en_US
dc.identifier.issn1546-2218
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85203849865
dc.identifier.scopusqualityQ1
dc.identifier.startpage4643en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12939/4927
dc.identifier.volume80en_US
dc.identifier.wosWOS:001342275600009
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorJasim, Zinah Khalid Jasim
dc.institutionauthorKurnaz, Sefer
dc.language.isoen
dc.publisherTech Science Pressen_US
dc.relation.ispartofComputers, Materials and Continua
dc.relation.isversionof10.32604/cmc.2024.055195en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnt colony algorithmen_US
dc.subjectCapacity optimizationen_US
dc.subjectSteganalysisen_US
dc.subjectSteganographyen_US
dc.titleAn improved image steganography security and capacity using ant colony algorithm optimization
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ä°sim:
TSP_CMC_55195.pdf
Boyut:
1.19 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
Ä°sim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: