Automated Neural Network-Based Optimization for Enhancing Dynamic Range in Active Filter Design
Yükleniyor...
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
MDPI
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This study presents an automated circuit design approach using neural networks to optimize the dynamic range (DR) of active filters, illustrated through the design of a 7th-order Chebyshev low-pass filter. Traditional design methods rely heavily on designer expertise, often resulting in time-intensive and energy-consuming processes. Two techniques are proposed: inverse modeling and forward modeling. In inverse modeling, artificial neural networks (ANNs) predict circuit parameters to meet specific performance goals. A randomly selected subset, comprising 0.05% of the 1,953,125 possible circuit configurations, was used to train and validate the model, providing an accurate representation of the entire dataset without requiring full-scale data analysis. In forward modeling, the same subset was used to train the network, which was then used to predict DR values for the remaining dataset. This approach enabled the identification of circuit parameters that resulted in optimal DR values. The results confirm the effectiveness of these techniques, with both inverse modeling and forward modeling outperforming the standard circuit design. At 160 kHz, a critical frequency for the operation of the designed filter, inverse modeling achieved a DR of 140.267 dB and forward modeling reached 136.965 dB, compared to 132.748 dB for the standard circuit designed using the traditional approach. These findings demonstrate that ANN-based methods can significantly enhance design accuracy, reduce time requirements, and improve energy efficiency in analog circuit optimization.
Açıklama
Anahtar Kelimeler
automated circuit design, circuit parameter prediction, analog circuit design, artificial neural networks (ANN), dynamic range optimization, Chebyshev low-pass filter design, neural network-based optimization
Kaynak
Electronics
WoS Q Değeri
Q2
Scopus Q Değeri
Cilt
14
Sayı
4
Künye
Daylak, F., & Ozoguz, S. (2025). Automated Neural Network-Based Optimization for Enhancing Dynamic Range in Active Filter Design. Electronics, 14(4), 786.