A hybrid local search-genetic algorithm for simultaneous placement of DG units and shunt capacitors in radial distribution systems
dc.contributor.author | Almabsout, Emad Ali | |
dc.contributor.author | El-Sehiemy, Ragab A. | |
dc.contributor.author | Uçan, Osman Nuri | |
dc.contributor.author | Bayat, Oğuz | |
dc.date.accessioned | 2021-05-15T11:34:03Z | |
dc.date.available | 2021-05-15T11:34:03Z | |
dc.date.issued | 2020 | |
dc.department | Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü | en_US |
dc.description | El-Sehiemy, Professor/ Ragab A./0000-0002-3340-4031 | |
dc.description.abstract | Controlling active/reactive power in distribution systems has a great impact on its performance. The placement of distributed generators (DGs) and shunt capacitors (SCs) are the most popular mechanisms to improve the distribution system performance. In this line, this paper proposes an enhanced genetic algorithm (EGA) that combines the merits of genetic algorithm and local search to find the optimal placement and capacity of the simultaneous allocation of DGs/SCs in the radial systems. Incorporating local search scheme enhances the search space capability and increases the exploration rate for finding the global solution. The proposed procedure aims at minimizing both total real power losses and the total voltage deviation in order to enhance the distribution system performance. To prove the proposed algorithm ability and scalability, three standard test systems, IEEE 33 bus, 69 bus, and 119-bus test distribution networks, are considered. The simulation results show that the proposed EGA can efficiently search for the optimal solutions of the problem and outperforms the other existing algorithms in the literature. Moreover, an economic based cost analysis is provided for light, shoulder and heavy loading levels. It was proven, the proposed EGA leads to significant improvements in the technical and economic points of view. | en_US |
dc.description.sponsorship | Ministry of Higher Education and Scientific Research of Libya | en_US |
dc.description.sponsorship | This work was supported by the Ministry of Higher Education and Scientific Research of Libya within the framework of scholarships provided by the Ministry. | en_US |
dc.identifier.doi | 10.1109/ACCESS.2020.2981406 | |
dc.identifier.endpage | 54481 | en_US |
dc.identifier.issn | 2169-3536 | |
dc.identifier.scopus | 2-s2.0-85082621782 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 54465 | en_US |
dc.identifier.uri | https://doi.org/10.1109/ACCESS.2020.2981406 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12939/272 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:000524749800007 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Uçan, Osman Nuri | |
dc.institutionauthor | Bayat, Oğuz | |
dc.institutionauthor | Almabsout, Emad Ali | |
dc.language.iso | en | |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Access | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Distributed Generators (DGs) | en_US |
dc.subject | Shunt Capacitors (SCs) | en_US |
dc.subject | Distribution System Performance | en_US |
dc.subject | Enhanced Genetic Algorithm (EGA) | en_US |
dc.title | A hybrid local search-genetic algorithm for simultaneous placement of DG units and shunt capacitors in radial distribution systems | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- uçan.pdf
- Boyut:
- 1.15 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin/ Full Text