Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network

dc.authorid0000-0003-4511-7694en_US
dc.contributor.authorAta, Oğuz
dc.contributor.authorMohammedqasem, Roa'a
dc.contributor.authorMohammedqasim, Hayder
dc.date.accessioned2022-06-22T06:13:58Z
dc.date.available2022-06-22T06:13:58Z
dc.date.issued2022en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractThe coronavirus pandemic has affected people all over the world and posed a great challenge to international health systems. To aid early detection of coronavirus disease-2019 (COVID-19), this study proposes a real-time detection system based on the Internet of Things framework. The system collects real-time data from users to determine potential coronavirus cases, analyses treatment responses for people who have been treated, and accurately collects and analyses the datasets. Artificial intelligence-based algorithms are an alternative decision-making solution to extract valuable information from clinical data. This study develops a deep learning optimisation system that can work with imbalanced datasets to improve the classification of patients. A synthetic minority oversampling technique is applied to solve the problem of imbalance, and a recursive feature elimination algorithm is used to determine the most effective features. After data balance and extraction of features, the data are split into training and testing sets for validating all models. The experimental predictive results indicate good stability and compatibility of the models with the data, providing maximum accuracy of 98% and precision of 97%. Finally, the developed models are demonstrated to handle data bias and achieve high classification accuracy for patients with COVID-19. The findings of this study may be useful for healthcare organisations to properly prioritise assets.en_US
dc.identifier.citationMohammedqasim, H., & Ata, O. (2022). Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network. Computers and Electrical Engineering, 100, 107971.en_US
dc.identifier.scopus2-s2.0-85127523999
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://hdl.handle.net/20.500.12939/2488
dc.identifier.volume100en_US
dc.identifier.wosWOS:000806642200002
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorAta, Oğuz
dc.language.isoen
dc.publisherComputers and Electrical Engineeringen_US
dc.relation.ispartofComputers and Electrical Engineering
dc.relation.isversionof10.1016/j.compeleceng.2022.107971en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCOVID-19en_US
dc.subjectSynthetic Minority Oversampling Techniqueen_US
dc.subjectRecursive Feature Eliminationen_US
dc.subjectImbalanced Dataseten_US
dc.subjectInternet of Thingsen_US
dc.titleReal-time data of COVID-19 detection with IoT sensor tracking using artificial neural network
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1-s2.0-S0045790622002464-main.pdf
Boyut:
2.65 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: