Social touch gesture recognition using convolutional neural network

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hindawi Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Recently, social touch gesture recognition has been considered an important topic for touch modality, which can lead to highly efficient and realistic human-robot interaction. In this paper, a deep convolutional neural network is selected to implement a social touch recognition system for raw input samples (sensor data) only. The touch gesture recognition is performed using a dataset previously measured with numerous subjects that perform varying social gestures. This dataset is dubbed as the corpus of social touch, where touch was performed on a mannequin arm. A leave-one-subject-out cross-validation method is used to evaluate system performance. The proposed method can recognize gestures in nearly real time after acquiring a minimum number of frames (the average range of frame length was from 0.2% to 4.19% from the original frame lengths) with a classification accuracy of 63.7%. The achieved classification accuracy is competitive in terms of the performance of existing algorithms. Furthermore, the proposed system outperforms other classification algorithms in terms of classification ratio and touch recognition time without data preprocessing for the same dataset.

Açıklama

Al-Azawi, Saad/0000-0003-2475-3499; albawi, saad Qassim/0000-0002-9111-1210

Anahtar Kelimeler

Neural Network, Social Touch, Engineering

Kaynak

Computational Intelligence and Neuroscience

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

2018

Sayı

Künye