Deep learning based COVID-19 detection via hard voting ensemble method

dc.contributor.authorShareef, Asaad Qasim
dc.contributor.authorKurnaz, Sefer
dc.date.accessioned2023-06-08T06:16:36Z
dc.date.available2023-06-08T06:16:36Z
dc.date.issued2023en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractHealthcare systems throughout the world are under a great deal of strain because to the continuing COVID-19 epidemic, making early and precise diagnosis critical for limiting the virus’s propagation and efficiently treating victims. The utilization of medical imaging methods like X-rays can help to speed up the diagnosis procedure. Which can offer valuable insights into the virus’s existence in the lungs. We present a unique ensemble approach to identify COVID-19 using X-ray pictures (X-ray-PIC) in this paper. The suggested approach, based on hard voting, combines the confidence scores of three classic deep learning models: CNN, VGG16, and DenseNet. We also apply transfer learning to enhance performance on small medical image datasets. Experiments indicate that the suggested strategy outperforms current techniques with a 97% accuracy, a 96% precision, a 100% recall, and a 98% F1-score.These results demonstrate the effectiveness of using ensemble approaches and COVID-19 transfer-learning diagnosis using X-ray-PIC, which could greatly aid in early detection and reducing the burden on global health systems.en_US
dc.identifier.citationShareef, A. Q., Kurnaz, S. (2023). Deep learning based COVID-19 detection via hard voting ensemble method. Wireless Personal Communications.en_US
dc.identifier.issn0929-6212
dc.identifier.scopus2-s2.0-85159085442
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://hdl.handle.net/20.500.12939/3507
dc.identifier.wosWOS:000984210700001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorShareef, Asaad Qasim
dc.institutionauthorKurnaz, Sefer
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofWireless Personal Communications
dc.relation.isversionof10.1007/s11277-023-10485-2en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCNNen_US
dc.subjectCOVID-19en_US
dc.subjectDeep learningen_US
dc.subjectEnsemble methoden_US
dc.subjectHard votingen_US
dc.titleDeep learning based COVID-19 detection via hard voting ensemble method
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
s11277-023-10485-2 (1).pdf
Boyut:
1.03 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: