An advanced mixed finite element formulation for flexural analysis of laminated composite plates incorporating HSDT and transverse stretching effect
[ X ]
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The modeling and analysis of laminated composite plates are performed using a unified Higher Order Shear Deformation Theory (HSDT) that accounts for transverse stretching effect. The adopted unified HSDT formulation allows the implementation of various shear functions. To derive a weak form from the generalized displacement fields of HSDTs, a variational principle is applied within a two-field mixed approach. The stationarity of the functional for laminated plate structures is obtained through the application of the Hellinger-Reissner variational principle. Hence, displacements and stress resultants, namely two independent fields, are included in finite element equations. Four-noded, quadrilateral elements are employed for the discretization of the plate's domain. While the generated functional initially had C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{1}$$\end{document} continuity, benefiting from the two-fields property of the mixed finite element formulation, integration by parts is performed that results with a functional requiring only C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{0}$$\end{document} continuity. To effectively capture the nonlinear and parabolic variation of transverse shear stress, it is determined that even with varying functions, the results are theoretically consistent with the elasticity method and the employed HSDT model. Also, when compared to the theories that are already accessible in the literature, for the bending behavior of composite plates, incorporating the stretching effect converges the exact results for laminated composite plates more than the studies where that effect is neglected.
Açıklama
Anahtar Kelimeler
Stretching effect, Higher order shear theory, Composite structures, Hellinger Reissner, Mixed finite element formulation, Static analysis
Kaynak
Archive of Applied Mechanics
WoS Q Değeri
Q2
Scopus Q Değeri
Cilt
95
Sayı
2
Künye
Kanığ, D., & Kutlu, A. (2025). An advanced mixed finite element formulation for flexural analysis of laminated composite plates incorporating HSDT and transverse stretching effect. Archive of Applied Mechanics, 95(2), 1-24.