A comprehensive analysis and performance evaluation for osteoporosis prediction models

dc.contributor.authorShams Alden, Zahraa Noor Aldeen M.
dc.contributor.authorAta, Oğuz
dc.date.accessioned2024-12-21T09:41:51Z
dc.date.available2024-12-21T09:41:51Z
dc.date.issued2024en_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractMedical data analysis is an expanding area of study that holds the promise of transforming the healthcare landscape. The use of available data by researchers gives guidelines to improve health practitioners’ decision-making capacity, thus enhancing patients’ lives. The study looks at using deep learning techniques to predict the onset of osteoporosis from the NHANES 2017–2020 dataset that was preprocessed and arranged into SpineOsteo and FemurOsteo datasets. Two feature selection methods, namely mutual information (MI) and recursive feature elimination (RFE), were applied to sequential deep neural network models, convolutional neural network models, and recurrent neural network models. It can be concluded from the models that the mutual information method achieved higher accuracy than recursive feature elimination, and the MI feature selection CNN model showed better performance by showing 99.15% accuracy for the SpineOsteo dataset and 99.94% classification accuracy for the FemurOsteo dataset. Key findings of this study include family medical history, cases of fractures in patients and parental hip fractures, and regular use of medications like prednisone or cortisone. The research underscores the potential for deep learning in medical data processing, which eventually opens the way for enhanced models for diagnosis and prognosis based on non-image medical data. The implications of the study shall then be important for healthcare providers to be more informed in their decision-making processes for patients’ outcomes.en_US
dc.identifier.citationShams Alden, Z. N. A. M., Ata, O. (2024). A comprehensive analysis and performance evaluation for osteoporosis prediction models. PeerJ Computer Science, 10, 1-28. 10.7717/peerj-cs.2338en_US
dc.identifier.endpage28en_US
dc.identifier.issn2376-5992
dc.identifier.pmid39896405
dc.identifier.scopus2-s2.0-85211086442
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12939/5088
dc.identifier.volume10en_US
dc.identifier.wosWOS:001374717200001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorShams Alden, Zahraa Noor Aldeen M.
dc.institutionauthorAta, Oğuz
dc.language.isoen
dc.publisherPeerJ Inc.en_US
dc.relation.ispartofPeerJ Computer Science
dc.relation.isversionof10.7717/peerj-cs.2338en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectConvolutional neural networks (CNNs)en_US
dc.subjectDeep learningen_US
dc.subjectFeature selectionen_US
dc.subjectMutual information (MI)en_US
dc.subjectNon-image medical dataen_US
dc.subjectRecurrent neural networks (RNNs)en_US
dc.subjectRecursive feature elimination (RFE)en_US
dc.titleA comprehensive analysis and performance evaluation for osteoporosis prediction models
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
peerj-cs-2338.pdf
Boyut:
732.33 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: